论文标题
闲置的车辆重新定位以动态乘车共享
Idle vehicle repositioning for dynamic ride-sharing
论文作者
论文摘要
在动态乘车共享系统中,智能重新定位闲置车辆使服务提供商能够最大化车辆利用率,并最大程度地减少请求拒绝率以及客户等待时间。在目前的实践中,此任务通常由个别驱动程序分散执行。我们提出了一种以预测驱动的重新定位算法的形式进行闲置车辆重新定位的集中式方法。我们方法的核心部分是一种新型的混合编程模型,旨在最大程度地提高预测需求的覆盖范围,同时最大程度地减少重新定位运动的旅行时间。该模型嵌入了计划服务中,还涵盖了其他相关任务,例如车辆派遣。我们通过对汉堡,纽约市和曼哈顿的现实世界数据集进行广泛的模拟研究来评估我们的方法。我们在完美的需求预测和天真的预测下测试了预测驱动的重新定位方法,并将其与反应性策略进行比较。结果表明,即使在大规模的情况下,我们的算法也适用于实时使用。与反应性算法相比,旅行请求的排斥率平均下降2.5个百分点,客户等待时间的平均降低为13.2%。
In dynamic ride-sharing systems, intelligent repositioning of idle vehicles enables service providers to maximize vehicle utilization and minimize request rejection rates as well as customer waiting times. In current practice, this task is often performed decentrally by individual drivers. We present a centralized approach to idle vehicle repositioning in the form of a forecast-driven repositioning algorithm. The core part of our approach is a novel mixed-integer programming model that aims to maximize coverage of forecasted demand while minimizing travel times for repositioning movements. This model is embedded into a planning service also encompassing other relevant tasks such as vehicle dispatching. We evaluate our approach through extensive simulation studies on real-world datasets from Hamburg, New York City, and Manhattan. We test our forecast-driven repositioning approach under a perfect demand forecast as well as a naive forecast and compare it to a reactive strategy. The results show that our algorithm is suitable for real-time usage even in large-scale scenarios. Compared to the reactive algorithm, rejection rates of trip requests are decreased by an average of 2.5 percentage points and customer waiting times see an average reduction of 13.2%.