论文标题

不同机器人类型中存在的漏洞的聚类和分析

Clustering and Analysis of Vulnerabilities Present in Different Robot Types

论文作者

Ekenna, Chinwe, Acharya, Bharvee

论文摘要

由于使用人工智能,机器人技术和物联网的自动化方面取得了新的进步,因此关注可能的脆弱性至关重要,以避免可能发生的网络攻击和劫持可能是灾难性的。由于机器人技术的脆弱性,灾难发生了许多后果,需要分析这些漏洞才能针对严重的漏洞,然后才会引起大灾难。本文旨在通过分析在脆弱性类型中分类的问题来突出每种类型的脆弱性的领域和严重性。我们通过仔细分析信息检索技术(如术语频率),使用机器学习技术(如K-均值)等信息检索技术,例如逆文档频率,降低尺寸频率,例如主组件分析和聚类,从而实现这一目标。通过执行此分析,检测到不同领域中机器人问题的严重性以及基于问题类型的问题的严重性。

Due to the new advancements in automation using Artificial Intelligence, Robotics and Internet of Things it has become crucial to pay attention to possible vulnerabilities in order to avoid cyber attack and hijacking that can occur which can be catastrophic. There have been many consequences of disasters due to vulnerabilities in Robotics, these vulnerabilities need to be analyzed to target the severe ones before they cause cataclysm. This paper aims to highlight the areas and severity of each type of vulnerability by analyzing issues categorized under the type of vulnerability. This we achieve by careful analysis of the data and application of information retrieval techniques like Term Frequency - Inverse Document Frequency, dimension reduction techniques like Principal Component Analysis and Clustering using Machine Learning techniques like K-means. By performing this analysis, the severity of robotic issues in different domains and the severity of the issue based on type of issue is detected.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源