论文标题

距离集合总和的不对称结合

An asymmetric bound for sum of distance sets

论文作者

Cheong, Daewoong, Koh, Doowon, Pham, Thang

论文摘要

对于$ e \ subset \ mathbb {f} _q^d $,让$δ(e)$表示由$ e $中的点对确定的距离。通过在抛物面,KOH,Pham,Shen和Vinh(2020)上使用套餐的添加能,证明,如果$ e,f \ subset \ mathbb {f} _q^d $是带有$ | e | e | e | e | e | e | e | e | gg q^Q^{d+\ frac {1} $ | e | e | e | e | e | e | e | e | e | e | e | Q/2 $。他们还证明了阈值$ q^{d+\ frac {1} {3}} $在$ | e | = | f | $时很清晰。在本文中,我们在不平衡的情况下提供了这种结果的改进,这在奇数方面基本上是锋利的。我们证明中最重要的工具是零半径范围的最佳$ l^2 $限制定理。

For $ E\subset \mathbb{F}_q^d$, let $Δ(E)$ denote the distance set determined by pairs of points in $E$. By using additive energies of sets on a paraboloid, Koh, Pham, Shen, and Vinh (2020) proved that if $E,F\subset \mathbb{F}_q^d $ are subsets with $|E||F|\gg q^{d+\frac{1}{3}}$ then $|Δ(E)+Δ(F)|> q/2$. They also proved that the threshold $q^{d+\frac{1}{3}}$ is sharp when $|E|=|F|$. In this paper, we provide an improvement of this result in the unbalanced case, which is essentially sharp in odd dimensions. The most important tool in our proofs is an optimal $L^2$ restriction theorem for the sphere of zero radius.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源