论文标题

Iwasawa的椭圆形模块化形式的曲折理论是惰性素数的假想二次磁场

Iwasawa theory of twists of elliptic modular forms over imaginary quadratic fields at inert primes

论文作者

Büyükboduk, Kâzım, Lei, Antonio

论文摘要

本文中我们的主要目的是研究$ \ mathrm {gl} _2 _2 \ times \ times \ mathrm {res} _ {k/\ mathbb {q}}} \ mathrm {glrm {gl} _1 $,$ k $ ity priph priph priph prime prime priph priped priped priph priph priped priped priped priped priped priped ymath prips $ quadr,在这种情况下,我们证明了对Iwasawa主要猜想的可划分结果,利用了Perrin-Riou功能的优化签名分解程序和Beilinson-Flach-Flach Elements,用于兰金伯格(Rankin)的家族 - $ p $ - 非凡形式的固定$ p $ p $ nonon-non-non-non-non-non-onon-ordar-ordornary modular form。最佳性使对Selmer群体的$ $ $ invariants和$ p $ - adic $ l $ functions的有效控制作为模块化形式各不相同,这对于我们的修补论点至关重要,在三个变量中,在iWasawa Main的猜想中建立一种划分。

Our primary goal in this article is to study the Iwasawa theory for semi-ordinary families of automorphic forms on $\mathrm{GL}_2\times\mathrm{Res}_{K/\mathbb{Q}}\mathrm{GL}_1$, where $K$ is an imaginary quadratic field where the prime $p$ is inert. We prove divisibility results towards Iwasawa main conjectures in this context, utilizing the optimized signed factorization procedure for Perrin-Riou functionals and Beilinson--Flach elements for a family of Rankin--Selberg products of $p$-ordinary forms with a fixed $p$-non-ordinary modular form. The optimality enables an effective control on the $μ$-invariants of Selmer groups and $p$-adic $L$-functions as the modular forms vary in families, which is crucial for our patching argument to establish one divisibility in an Iwasawa main conjecture in three variables.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源