论文标题
离子成像中的单个粒子跟踪不确定性
Single particle tracking uncertainties in ion imaging
论文作者
论文摘要
基于蒙特卡洛模拟进行了对离子成像的单个粒子跟踪系统中路径不确定性的广泛比较。研究了空间分辨率作为系统参数的函数,例如几何学,检测器特性以及质子和氦束的能量,以作为硬件开发的指南。 将一级粒子路径在水量内采样,并将其与从检测器测量值获得的最可能的路径估计进行了比较,从而产生了深度依赖性的不确定性包膜。该曲线沿线的最大不确定性转换为一组参数值的最小X射线照相像素间距的保守估计。 分析了具有各种参数设置的模拟,以获取作为系统参数函数的可触发像素间距的概述。结果用于确定探测器材料预算和位置分辨率的间隔,该间隔产生的像素间距足够小,以进行临床剂量计算。 为了确保在2毫米以下的像素间距,检测器的材料预算应保持在0.25%以下,对于200 $ \ mathrm {μm} $的位置分辨率或低于0.75%,对于10 $ \ mathrm {μm} $的分辨率。使用质子,对于300 mm或大间隙的幻影尺寸,无法实现次毫米的像素大小。使用氦离子,即使对于较大的幻影尺寸和间隙,也可以实现次数像素间距,只要位置分辨率小于100 $ \ mathrm {μm} $,并且材料预算低于0.75%。
An extensive comparison of the path uncertainty in single particle tracking systems for ion imaging was carried out based on Monte Carlo simulations. The spatial resolution as function of system parameters such as geometry, detector properties and the energy of proton and helium beams was investigated to serve as a guideline for hardware developments. Primary particle paths were sampled within a water volume and compared to the most likely path estimate obtained from detector measurements, yielding a depth-dependent uncertainty envelope. The maximum uncertainty along this curve was converted to a conservative estimate of the minimal radiographic pixel spacing for a single set of parameter values. Simulations with various parameter settings were analysed to obtain an overview of the reachable pixel spacing as function of system parameters. The results were used to determine intervals of detector material budget and position resolution that yield a pixel spacing small enough for clinical dose calculation. To ensure a pixel spacing below 2 mm, the material budget of a detector should remain below 0.25 % for a position resolution of 200 $\mathrm{μm}$ or below 0.75 % for a resolution of 10 $\mathrm{μm}$. Using protons, a sub-millimetre pixel size could not be achieved for a phantom size of 300 mm or at a large clearance. With helium ions, a sub-millimetre pixel spacing could be achieved even for a large phantom size and clearance, provided the position resolution was less than 100 $\mathrm{μm}$ and material budget was below 0.75 %.