论文标题

瞬态制度中能量传输的热力学不确定性关系 - 模型研究

Thermodynamic uncertainty relation for energy transport in transient regime -- Model study

论文作者

Saryal, Sushant, Sadekar, Onkar, Agarwalla, Bijay Kumar

论文摘要

我们研究了最近发现的热力学不确定性关系(TUR)的瞬态版本,该关系在净熵产生方面为某些不平衡的热力学可观察物提供了精确的成本权衡关系。我们在能量传输的背景下,在三个可解决的玩具模型系统(两个耦合的谐波振荡器,两个耦合量子器和一个混合耦合振荡器Qubit System)的情况下探索这种关系,并分析由TUR TUR的运输载体的基础统计数据所起的作用。有趣的是,对于所有这些模型,取决于统计数据,TUR比率可以表示为通用项的总和或差异,该术语始终更大或等于2和相应的熵生产项。我们发现,源自通用波动对称性的TUR的广义版本总是满足的。然而,有趣的是,专门的TUR(一种更紧密的结合)总是满足耦合的谐波振荡器系统服从Bose-Einstein统计的。尽管对于耦合量子,遵守费米样统计数据和混合量子振荡器系统具有混合的费米 - 苏纳州统计数据,在某些参数方案中均观察到违反紧密结合的侵犯。我们提供了这种违规行为的条件。我们还提供了一个严格的证明,遵循非平衡绿色的功能方法,即在通用两部分系统的弱耦合方面始终满足更紧密的界限。

We investigate transient version of the recently discovered thermodynamic uncertainty relation (TUR) which provides a precision-cost trade-off relation for certain out-of-equilibrium thermodynamic observables in terms of net entropy production. We explore this relation in the context of energy transport in a bipartite setting for three exactly solvable toy model systems (two coupled harmonic oscillators, two coupled qubits and a hybrid coupled oscillator-qubit system) and analyze the role played by the underlying statistics of the transport carriers in TUR. Interestingly, for all these models, depending on the statistics, the TUR ratio can be expressed as a sum or a difference of an universal term which is always greater or equal to 2 and a corresponding entropy production term. We find that the generalized version of the TUR, originating from the universal fluctuation symmetry is always satisfied. However, interestingly, the specialized TUR, a tighter bound, is always satisfied for the coupled harmonic oscillator system obeying Bose-Einstein statistics. Whereas, for both the coupled qubit, obeying Fermi-like statistics and the hybrid qubit-oscillator system with mixed Fermi-Bose statistics, violation of tighter bound is observed in certain parameter regimes. We have provided conditions for such violations. We also provide a rigorous proof following the non-equilibrium Green's function approach that the tighter bound is always satisfied in the weak-coupling regime for generic bipartite systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源