论文标题
LHC事件的生成网络
Generative Networks for LHC events
论文作者
论文摘要
LHC物理学至关重要的是我们从第一原则中有效模拟事件的能力。现代的机器学习,特别是生成网络,将有助于我们解决即将到来的LHC运行的模拟挑战。此类网络可以用于已建立的仿真工具中,也可以作为新框架的一部分。由于神经网络可以倒置,因此它们在LHC分析中也开放了新的途径。
LHC physics crucially relies on our ability to simulate events efficiently from first principles. Modern machine learning, specifically generative networks, will help us tackle simulation challenges for the coming LHC runs. Such networks can be employed within established simulation tools or as part of a new framework. Since neural networks can be inverted, they also open new avenues in LHC analyses.