论文标题
使用稍微破裂的高旋格对称性来限制动量空间相关器
Constraining momentum space correlators using slightly broken higher spin symmetry
论文作者
论文摘要
在这项工作中,我们在[1]上建立了与破裂的高旋转对称性有关的动量空间病房的身份,作为计算旋转算子相关的替代方法,例如,诸如Quasi-Fermionic和Quasi-Bosonic理论之类的相互作用理论。计算相关函数的直接Feynman图方法很复杂,通常仅在特定的运动学方面进行。我们使用较高的自旋方程来获得均衡,并且对涉及旋转和标量运算符的两点,三分和四点相关器的奇偶校验奇特的贡献,并在一般运动学方面构成了旋转和标量运算符,并将我们的结果与可用情况的文献中的现有结果相匹配。 关于较高自旋方程的有趣事实之一是,人们可以将它们远离保形固定点。我们通过考虑使用较高自旋方程的两点函数来考虑质量变形的游离玻色子理论并求解两点函数来说明这一点。
In this work, building up on [1] we present momentum space Ward identities related to broken higher spin symmetry as an alternate approach to computing correlators of spinning operators in interacting theories such as the quasi-fermionic and quasi-bosonic theories. The direct Feynman diagram approach to computing correlation functions is intricate and in general has been performed only in specific kinematic regimes. We use higher spin equations to obtain the parity even and parity odd contributions to two-, three- and four-point correlators involving spinning and scalar operators in a general kinematic regime, and match our results with existing results in the literature for cases where they are available. One of the interesting facts about higher spin equations is that one can use them away from the conformal fixed point. We illustrate this by considering mass deformed free boson theory and solving for two-point functions of spinning operators using higher spin equations.