论文标题
mthetgnn:多元时间序列预测的异质图嵌入框架
MTHetGNN: A Heterogeneous Graph Embedding Framework for Multivariate Time Series Forecasting
论文作者
论文摘要
分析历史时间序列以预测未来趋势的多元时间序列预测可以有效地帮助决策。 MT中变量之间的复杂关系,包括静态,动态,可预测和潜在关系,使得挖掘更多MT的特征成为可能。建模复杂关系不仅在表征潜在依赖性以及建模时间依赖性方面至关重要,而且在MTS预测任务中带来了巨大的挑战。但是,现有方法主要集中于建模MTS变量之间的某些关系。在本文中,我们提出了一种新颖的端到端深度学习模型,称为多元时间序列通过异质图神经网络(MTHETGNN)预测。为了表征变量之间的复杂关系,在MTHETGNN中设计了一个关系嵌入模块,其中每个变量都被视为一个图节点,每种类型的边缘代表特定的静态或动态关系。同时,引入了时间序列特征提取的时间嵌入模块,其中涉及具有不同感知量表的卷积神经网络(CNN)过滤器。最后,采用异质图嵌入模块来处理由两个模块产生的复杂结构信息。现实世界中的三个基准数据集用于评估所提出的MTHETGNN。综合实验表明,MTHETGNN实现了最新的实验,导致MTS预测任务。
Multivariate time series forecasting, which analyzes historical time series to predict future trends, can effectively help decision-making. Complex relations among variables in MTS, including static, dynamic, predictable, and latent relations, have made it possible to mining more features of MTS. Modeling complex relations are not only essential in characterizing latent dependency as well as modeling temporal dependence but also brings great challenges in the MTS forecasting task. However, existing methods mainly focus on modeling certain relations among MTS variables. In this paper, we propose a novel end-to-end deep learning model, termed Multivariate Time Series Forecasting via Heterogeneous Graph Neural Networks (MTHetGNN). To characterize complex relations among variables, a relation embedding module is designed in MTHetGNN, where each variable is regarded as a graph node, and each type of edge represents a specific static or dynamic relationship. Meanwhile, a temporal embedding module is introduced for time series features extraction, where involving convolutional neural network (CNN) filters with different perception scales. Finally, a heterogeneous graph embedding module is adopted to handle the complex structural information generated by the two modules. Three benchmark datasets from the real world are used to evaluate the proposed MTHetGNN. The comprehensive experiments show that MTHetGNN achieves state-of-the-art results in the MTS forecasting task.