论文标题
在低温温度下电磁设备中的热噪声
Thermal Noise in Electro-Optic Devices at Cryogenic Temperatures
论文作者
论文摘要
超导量子计算机所基于的量子位(Qubits)具有与具有GHz频率的光子相对应的能量尺度。 Gigahertz结构域中光子的能量太低,无法通过嘈杂的室温环境传输,在这些环境中,信号在热噪声中会丢失。另一方面,光学光子具有更高的能量,并且可以使用高效的单光子检测器检测信号。因此,从微波炉到光学频率是量子设备的潜在促进技术。但是,在这样的设备中,光泵可以是热噪声的来源,从而使保真度降解。输入微波状态与输出光学状态的相似性。为了研究这种效果的大小,我们基于基于Niobate Whispering Gallery模式谐振器的电透射剂的亚kelvin热行为进行建模。我们发现连续泵有最佳功率水平,而泵的脉冲操作会增加转换的保真度。
The quantum bits (qubits) on which superconducting quantum computers are based have energy scales corresponding to photons with GHz frequencies. The energy of photons in the gigahertz domain is too low to allow transmission through the noisy room-temperature environment, where the signal would be lost in thermal noise. Optical photons, on the other hand, have much higher energies, and signals can be detected using highly efficient single-photon detectors. Transduction from microwave to optical frequencies is therefore a potential enabling technology for quantum devices. However, in such a device the optical pump can be a source of thermal noise and thus degrade the fidelity; the similarity of input microwave state to the output optical state. In order to investigate the magnitude of this effect we model the sub-Kelvin thermal behavior of an electro-optic transducer based on a lithium niobate whispering gallery mode resonator. We find that there is an optimum power level for a continuous pump, whilst pulsed operation of the pump increases the fidelity of the conversion.