论文标题
抓住检测网络,具有置信驱动的半监督域适应性的不确定性估计
Grasping Detection Network with Uncertainty Estimation for Confidence-Driven Semi-Supervised Domain Adaptation
论文作者
论文摘要
对于许多机器人应用,只需使用少数标记数据的数据域适应性,例如,在掌握检测中,从握把数据集中学到的推理技能不够通用,无法直接应用于其他各种日常/工业应用。本文提出了一种方法,可以通过具有信心驱动的半监督学习的新颖抓地力检测网络来适应易于域的适应性,其中这两个组成部分彼此之间有着深入的相互作用。提议的抓地检测网络特别通过利用特征金字塔网络(FPN)来提供预测不确定性估计机制,而均值老师半教师的半监督学习则利用这种不确定性信息来强调一致性损失,仅对那些没有保证的数据,我们将其称为置信度的平均驱动式的老师,这是我们提及的。这种方法在很大程度上阻止了学生模型从一致性损失中学习错误/有害信息,从而加快了学习进度并提高了模型的准确性。我们的结果表明,提出的网络可以在康奈尔(Cornell)掌握数据集上实现高成功率,并且对于具有非常有限的数据的域适应性,信心驱动的均值教师的表现优于原始的平均教师,而直接培训超过10%,超过10%的评估损失,尤其是避免过度拟合和模型分歧。
Data-efficient domain adaptation with only a few labelled data is desired for many robotic applications, e.g., in grasping detection, the inference skill learned from a grasping dataset is not universal enough to directly apply on various other daily/industrial applications. This paper presents an approach enabling the easy domain adaptation through a novel grasping detection network with confidence-driven semi-supervised learning, where these two components deeply interact with each other. The proposed grasping detection network specially provides a prediction uncertainty estimation mechanism by leveraging on Feature Pyramid Network (FPN), and the mean-teacher semi-supervised learning utilizes such uncertainty information to emphasizing the consistency loss only for those unlabelled data with high confidence, which we referred it as the confidence-driven mean teacher. This approach largely prevents the student model to learn the incorrect/harmful information from the consistency loss, which speeds up the learning progress and improves the model accuracy. Our results show that the proposed network can achieve high success rate on the Cornell grasping dataset, and for domain adaptation with very limited data, the confidence-driven mean teacher outperforms the original mean teacher and direct training by more than 10% in evaluation loss especially for avoiding the overfitting and model diverging.