论文标题
用于解决晶体系统的伯特盐盐特征值问题的有效,准确的算法
Efficient and Accurate Algorithms for Solving the Bethe-Salpeter Eigenvalue Problem for Crystalline Systems
论文作者
论文摘要
电子的激发可以解释与光吸收和散射有关的材料的光学特性。伯特 - 盐分方程是从第一原理(从头算)来描述这些过程的最新方法,即无需模型中的经验数据。为了利用方程式的预测能力,它通过适当的离散方案映射到特征值问题。所得的大型,致密,结构化基质的特征物可用于计算所考虑的晶体或分子系统的介电特性。矩阵总是显示$ 2 \ times 2 $块结构。另外,某些确定性属性通常保持。可以为晶体系统获取一种形式,另一种形式更一般,例如可以用于研究分子。在这项工作中,我们提出了新的理论结果,以非标准标量产品的语言表征两种形式的结构。这些结果使我们能够对晶体系统最先进的解决方案方法开发新的观点。这种新的观点用于开发两种新方法来解决特征值问题。在提供相同程度的准确性的同时,需要更少的计算工作。与当前使用的方法相比,另一个提高了预期准确性,并且性能可比。两种方法都非常适合高性能环境,仅依靠基本的数值线性代数构建块。
Optical properties of materials related to light absorption and scattering are explained by the excitation of electrons. The Bethe-Salpeter equation is the state-of-the-art approach to describe these processes from first principles (ab initio), i.e. without the need for empirical data in the model. To harness the predictive power of the equation, it is mapped to an eigenvalue problem via an appropriate discretization scheme. The eigenpairs of the resulting large, dense, structured matrix can be used to compute dielectric properties of the considered crystalline or molecular system. The matrix always shows a $2\times 2$ block structure. Additionally, certain definiteness properties typically hold. One form can be acquired for crystalline systems, another one is more general and can for example be used to study molecules. In this work, we present new theoretical results characterizing the structure of the two forms in the language of non-standard scalar products. These results enable us to develop a new perspective on the state-of-the-art solution approach for crystalline systems. This new viewpoint is used to develop two new methods for solving the eigenvalue problem. One requires less computational effort while providing the same degree of accuracy. The other one improves the expected accuracy, compared to methods currently in use, with a comparable performance. Both methods are well suited for high performance environments and only rely on basic numerical linear algebra building blocks.