论文标题
两分图中的最佳负载平衡
Optimal Load Balancing in Bipartite Graphs
论文作者
论文摘要
云平台中的应用程序激发了研究在工作服务器约束和服务器异质性下有效负载平衡的研究。在本文中,我们研究了在两分图上的负载平衡,左节点对应于作业类型,右节点对应于服务器,每个边缘表明服务器可以提供工作类型。因此,边缘代表局部约束,即,每个作业只能在包含某些数据和/或机器学习(ML)模型的服务器上服务。该系统中的服务器可以具有异质的服务率。在这种情况下,我们调查了两项名为“最短期标题”(JFSQ)的策略的性能和fiDle-diDle-Quesue(JFIQ)的表现,它们是Join-the-short-the-squeue and join-the-iDle-de-Idle-Queue的简单变体,在这里,纽带是为了支持快速的服务器而损坏。在“良好连接”的图形条件下,我们表明JFSQ和JFIQ在服务器数量进入无穷大的平均响应时间渐近最佳。除渐近最优性外,我们还获得了有限大小系统的平均响应时间上的上限。我们进一步表明,通过相对稀疏的连接性,可以通过随机的两分图结构来满足良好的连接条件。
Applications in cloud platforms motivate the study of efficient load balancing under job-server constraints and server heterogeneity. In this paper, we study load balancing on a bipartite graph where left nodes correspond to job types and right nodes correspond to servers, with each edge indicating that a job type can be served by a server. Thus edges represent locality constraints, i.e., each job can only be served at servers which contained certain data and/or machine learning (ML) models. Servers in this system can have heterogeneous service rates. In this setting, we investigate the performance of two policies named Join-the-Fastest-of-the-Shortest-Queue (JFSQ) and Join-the-Fastest-of-the-Idle-Queue (JFIQ), which are simple variants of Join-the-Shortest-Queue and Join-the-Idle-Queue, where ties are broken in favor of the fastest servers. Under a "well-connected" graph condition, we show that JFSQ and JFIQ are asymptotically optimal in the mean response time when the number of servers goes to infinity. In addition to asymptotic optimality, we also obtain upper bounds on the mean response time for finite-size systems. We further show that the well-connectedness condition can be satisfied by a random bipartite graph construction with relatively sparse connectivity.