论文标题

通过局部积聚在同位素上不同的陆地行星

Isotopically distinct terrestrial planets via local accretion

论文作者

Mah, Jingyi, Brasser, Ramon

论文摘要

将陨石数据的同位素约束与行星形成的动态模型相结合被证明在确定陆生星形成的最佳模型方面是有利的。先前的研究表明,在经典和大钉模型中重现地球和火星不同同位素组成的可能性非常低。在大钉模型的框架内,要使火星在同位素上与地球上不同,它必须在非常具体的条件下形成。在这里,我们进行了一个相当新的尚未探索的模型 - 耗尽的盘模型 - 到测试。它的前提是,从火星轨道及以后的内部原球盘中的区域耗尽了质量,因此火星的材料不足以生长至更大的尺寸。我们的目的是测试地球和火星的不同同位素组成是否是该模型的自然结果。我们发现,地球行星材料大部分是局部吸收的,并且具有足够不同的饲养区域。如果在原球星盘的陆地行星区域中存在同位素梯度,则地球和火星,并扩大金星,可以具有不同的同位素组成。我们的结果表明,内部太阳系中的材料很可能没有经过实质性混合,使潜在的同位素梯度均质,而Grand Pack模型相比,由于木星迁移将材料混合在一起,因此陆地行星的饲养区几乎相同。

Combining isotopic constraints from meteorite data with dynamical models of planet formation proves to be advantageous in identifying the best model for terrestrial planet formation. Prior studies have shown that the probability of reproducing the distinct isotopic compositions of the Earth and Mars for both classical and Grand Tack models is very low. In the framework of the Grand Tack model, for Mars to be isotopically different from the Earth, it had to form under very specific conditions. Here, we subjected a fairly new and unexplored model--the depleted disc model--to the test. It presupposes that the region in the inner protoplanetary disc from Mars' orbit and beyond is depleted in mass such that Mars is left with insufficient material to grow to a larger size. Our aim is to test the whether the distinct isotopic compositions of the Earth and Mars are a natural outcome of this model. We found that the terrestrial planets accrete material mostly locally and have feeding zones that are sufficiently distinct. The Earth and Mars, and by extension, Venus, can have distinct isotopic compositions if there is an isotopic gradient in the terrestrial planet region of the protoplanetary disc. Our results suggest that the material in the inner Solar System most likely did not undergo substantial mixing that homogenised the potential isotopic gradient, in contrast to the Grand Tack model where the feeding zones of the terrestrial planets are nearly identical due to the mixing of material by Jupiter's migration.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源