论文标题
在一类随机集体整数集中
On a class of random sets of positive integers
论文作者
论文摘要
在本说明中,我们研究了由Bernoulli随机变量引起的一类正整数的随机子集。我们获得了足够的条件,使随机集几乎是裸体,没有界限的间隙,并且分别包含无限的许多算术渐进。
In this note, we study a class of random subsets of positive integers induced by Bernoulli random variables. We obtain sufficient conditions such that the random set is almost surely lacunary, does not have bounded gaps and contains infinitely many arithmetic progressions, respectively.