论文标题

崩溃发作的一种正常形式:非线性schrodinger方程的原型示例

A Normal Form for the Onset of Collapse: the Prototypical Example of the Nonlinear Schrodinger Equation

论文作者

Chapman, S. J., Kavousanakis, M. E., Kevrekidis, I. G., Kevrekidis, P. G.

论文摘要

在有限时间崩溃的非线性波的研究是普遍利益的主题,例如在光学,原子,等离子体物理和非线性动力学中。在这里,我们重新审视了非线性schrodinger方程的典型示例,并系统地得出了从固定固定溶液出现爆炸溶液的正常形式。尽管这是一个广泛研究的问题,但这种正常形式,基于除所有代数顺序以外的渐近方法的方法,统一了先前研究的维度依赖性和依赖性依赖性分歧。它与数字在领导和高阶效应中产生了极好的一致性。它适用于无限和有限域。它在所有(次临界,批判性和超批评)方面都是有效的。

The study of nonlinear waves that collapse in finite time is a theme of universal interest, e.g. within optical, atomic, plasma physics, and nonlinear dynamics. Here we revisit the quintessential example of the nonlinear Schrodinger equation and systematically derive a normal form for the emergence of blowup solutions from stationary ones. While this is an extensively studied problem, such a normal form, based on the methodology of asymptotics beyond all algebraic orders, unifies both the dimension-dependent and power-law-dependent bifurcations previously studied; it yields excellent agreement with numerics in both leading and higher-order effects; it is applicable to both infinite and finite domains; and it is valid in all (subcritical, critical and supercritical) regimes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源