论文标题

自我监督的步态编码以当地意识到人重新识别的关注

Self-Supervised Gait Encoding with Locality-Aware Attention for Person Re-Identification

论文作者

Rao, Haocong, Wang, Siqi, Hu, Xiping, Tan, Mingkui, Da, Huang, Cheng, Jun, Hu, Bin

论文摘要

基于步态的人重新识别(RE-ID)对于安全至关重要的应用非常有价值,并且仅使用3D骨架数据来提取人Re-ID的歧视步态特征是一个新兴的公开主题。现有方法要么采用手工制作的功能,要么通过传统的监督学习范例来学习步态功能。与以前的方法不同,我们首次提出了一种通用的步态编码方法,该方法可以利用未标记的骨架数据以自我监督的方式学习步态表示。具体而言,我们首先建议通过学习以相反顺序重建输入骨架序列来引入自我训练,这有助于学习更丰富的高级语义和更好的步态表示。其次,受到运动的连续性赋予了具有较高相关性(“局部”)的临时骨骼这一事实的启发,我们提出了一种局部感知的注意机制,该机制鼓励在重建当前骨骼时学习更大的注意力重量,以便在编码GAIT时学习局部骨骼。最后,我们提出了基于注意力的步态编码(AGES),这些编码是使用当地意识到的关注的上下文向量构建的,作为最终步态表​​示。年龄直接用于实现有效的人重新ID。我们的方法通常将现有基于骨架的方法提高到10-20%的排名1精度,并且与具有额外的RGB或深度信息的多模式方法相当甚至更高的性能。我们的代码可在https://github.com/kali-hac/sge-la上找到。

Gait-based person re-identification (Re-ID) is valuable for safety-critical applications, and using only 3D skeleton data to extract discriminative gait features for person Re-ID is an emerging open topic. Existing methods either adopt hand-crafted features or learn gait features by traditional supervised learning paradigms. Unlike previous methods, we for the first time propose a generic gait encoding approach that can utilize unlabeled skeleton data to learn gait representations in a self-supervised manner. Specifically, we first propose to introduce self-supervision by learning to reconstruct input skeleton sequences in reverse order, which facilitates learning richer high-level semantics and better gait representations. Second, inspired by the fact that motion's continuity endows temporally adjacent skeletons with higher correlations ("locality"), we propose a locality-aware attention mechanism that encourages learning larger attention weights for temporally adjacent skeletons when reconstructing current skeleton, so as to learn locality when encoding gait. Finally, we propose Attention-based Gait Encodings (AGEs), which are built using context vectors learned by locality-aware attention, as final gait representations. AGEs are directly utilized to realize effective person Re-ID. Our approach typically improves existing skeleton-based methods by 10-20% Rank-1 accuracy, and it achieves comparable or even superior performance to multi-modal methods with extra RGB or depth information. Our codes are available at https://github.com/Kali-Hac/SGE-LA.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源