论文标题
C*-Algebras K理论的切除定理,并应用于Groupoid C*-ergebras
An excision theorem for the K-theory of C*-algebras, with applications to groupoid C*-algebras
论文作者
论文摘要
我们讨论了$ c^{*} $ - 代数,$ a $的相对K理论,以及$ c^{*} $ - subalgebra,$ a'\ subseteq a $。相对组表示$ k_ {i}(a'; a),i = 0,1 $,并且是由于karoubi所致。我们提出了两对$ a'\ subseteq a $和$ b'\ subseteq b $相关的情况,因此各自的相对K理论之间存在天然同构。我们还讨论了$ a $ a $ a和$ b $是$ c^{*} $ - 一对本地紧凑的代数$ c^{*} $的申请。
We discuss the relative K-theory for a $C^{*}$-algebra, $A$, together with a $C^{*}$-subalgebra, $A' \subseteq A$. The relative group is denoted $K_{i}(A';A), i = 0, 1$, and is due to Karoubi. We present a situation of two pairs $A' \subseteq A$ and $B' \subseteq B$ are related so that there is a natural isomorphism between their respective relative K-theories. We also discuss applications to the case where $A$ and $B$ are $C^{*}$-algebras of a pair of locally compact, Hausdorff topological groupoids, with Haar systems.