论文标题
在无序的金属TA -Nanoisland feni多层中,纳米级的MOOIJ相关性控制
Control of Mooij correlations at the nanoscale in the disordered metallic Ta - nanoisland FeNi multilayers
论文作者
论文摘要
当电子均值自由路径大约等于原子间距离时,高度无序的金属中的定位现象接近莫特·欧菲尔(MIR)限制的极端条件(miR)限制是一个具有挑战性的问题,这是一个具有挑战性的问题。在这里,为了阐明这些本地化现象,我们研究了由纳米级的多层膜的直流传输和光学传导性特性,由无序的金属TA和磁性feni nanoisland层组成,那里的铁磁性Feni nanoislands具有10^3-10^3-10^5 BOHRRR MAGNETS()巨大的磁性时刻。在这些多层结构中,由于通过TA电子子系统作用的间接交换力,Feni Nanoisland巨型磁矩正在相互作用。我们发现,无序的TA层中的定位现象导致自由电荷载体的DRUDE贡献减少以及在1-2 EV频谱范围内的低能量电子激发的出现,这可能伴随着电子不中等质量的形成。从直流运输和光学研究的一致结果中,我们发现,从渗透率阈值从超磁性到FENI层内的铁磁行为的进化,FENI层厚度的增长会导致来自相关局部电子状态的TA Electron的离域TA TA TA TA TA ta。相反,我们发现,当Feni层不连续并由随机分布的超paragnetic Feni纳米兰群岛表示时,TA层归一化的DC电导率下降到MIR限制下降到60%以下。导致直流电导率的发现效应低于miR极限以下,可能与非癌性和纯量子(多体)定位现象有关,这需要进一步挑战。
Localisation phenomena in highly disordered metals close to the extreme conditions determined by the Mott-Ioffe-Regel (MIR) limit when the electron mean free path is approximately equal to the interatomic distance is a challenging problem. Here, to shed light on these localisation phenomena, we studied the dc transport and optical conductivity properties of nanoscaled multilayered films composed of disordered metallic Ta and magnetic FeNi nanoisland layers, where ferromagnetic FeNi nanoislands have giant magnetic moments of 10^3-10^5 Bohr magnetons (μ_B). In these multilayered structures, FeNi nanoisland giant magnetic moments are interacting due to the indirect exchange forces acting via the Ta electron subsystem. We discovered that the localisation phenomena in the disordered Ta layer lead to a decrease in the Drude contribution of free charge carriers and the appearance of the low-energy electronic excitations in the 1-2 eV spectral range characteristic of electronic correlations, which may accompany the formation of electronic inhomogeneities. From the consistent results of the dc transport and optical studies we found that with an increase in the FeNi layer thickness across the percolation threshold evolution from the superferromagnetic to ferromagnetic behaviour within the FeNi layer leads to the delocalisation of Ta electrons from the associated localised electronic states. On the contrary, we discovered that when the FeNi layer is discontinuous and represented by randomly distributed superparamagnetic FeNi nanoislands, the Ta layer normalized dc conductivity falls down below the MIR limit by about 60%. The discovered effect leading to the dc conductivity fall below the MIR limit can be associated with non-ergodicity and purely quantum (many-body) localisation phenomena, which need to be challenged further.