论文标题
快速近似多输出高斯流程
Fast Approximate Multi-output Gaussian Processes
论文作者
论文摘要
高斯流程回归模型是一种吸引人的机器学习方法,因为它们从示例数据中学习表达性的非线性模型,并估算了看不见点的平均值和协方差。但是,随着培训样本的数量,指数级计算复杂性的增长一直是一个长期的挑战。在培训期间,必须在每次迭代时计算和倒入$ n \ times n $内核矩阵。回归需要计算$ m \ times n $内核,其中$ n $和$ m $分别是培训和测试点的数量。在这项工作中,我们展示了使用特征值和功能近似协方差内核如何导致近似高斯过程,并显着降低了训练和回归复杂性。通过提出的方法培训只需要计算$ n \ times n $ eigenfunction矩阵和$ n \ times n $ inverse,其中$ n $是选定的特征值。此外,回归现在仅需要$ m \ times n $矩阵。最后,在特殊情况下,高参数优化是完全独立的训练样本数量。所提出的方法可以在多个输出上进行回归,估计任何顺序回归器的导数,并了解它们之间的相关性。在模拟示例中证明了降低计算复杂性,回归能力和多输出相关性学习。
Gaussian processes regression models are an appealing machine learning method as they learn expressive non-linear models from exemplar data with minimal parameter tuning and estimate both the mean and covariance of unseen points. However, exponential computational complexity growth with the number of training samples has been a long standing challenge. During training, one has to compute and invert an $N \times N$ kernel matrix at every iteration. Regression requires computation of an $m \times N$ kernel where $N$ and $m$ are the number of training and test points respectively. In this work we show how approximating the covariance kernel using eigenvalues and functions leads to an approximate Gaussian process with significant reduction in training and regression complexity. Training with the proposed approach requires computing only a $N \times n$ eigenfunction matrix and a $n \times n$ inverse where $n$ is a selected number of eigenvalues. Furthermore, regression now only requires an $m \times n$ matrix. Finally, in a special case the hyperparameter optimization is completely independent form the number of training samples. The proposed method can regress over multiple outputs, estimate the derivative of the regressor of any order, and learn the correlations between them. The computational complexity reduction, regression capabilities, and multioutput correlation learning are demonstrated in simulation examples.