论文标题
长时间动态突出的生物学动机模型中的水平跨统计:通行时间,随机和极端旅行
Level crossing statistics in a biologically motivated model of a long dynamic protrusion: passage times, random and extreme excursions
论文作者
论文摘要
长细胞突出实际上是一维的,是高度动态的亚细胞结构。即使在稳定状态下,许多此类突出的长度也会在平均值上波动。我们在这里开发了一个随机模型,该模型是由一种称为鞭毛的真核细胞(也称为cilium)的真核细胞附属的长度波动的动机。利用用于计算随机过程随机偏移级别统计的技术,我们衍生了通行时间的分析表达式,以击中各种阈值,索期的随机偏移时间超出了阈值,超出了这些模型Flagella的寿命。我们确定了该模型鞭毛的不同参数状态,以模仿众所周知的鞭毛细胞的野生型和突变体。通过在这些不同的参数状态下分析我们的模型,我们证明了突变如何改变稳态统计数据,即使稳态长度不受相同突变的影响。除了长度的平均值和长度方差外,理论上预测的级别跨统计数据的比较,在稳态的平均值和方差与相应的实验数据可以用作不久的将来,作为对鞭毛长度控制模型的有效性的严格测试。为此目的所需的实验数据原则上从未到达,但可以使用最近开发的用于鞭毛长度波动的方法来收集。
Long cell protrusions, which are effectively one-dimensional, are highly dynamic subcellular structures. Length of many such protrusions keep fluctuating about the mean value even in the the steady state. We develop here a stochastic model motivated by length fluctuations of a type of appendage of an eukaryotic cell called flagellum (also called cilium). Exploiting the techniques developed for the calculation of level-crossing statistics of random excursions of stochastic process, we have derived analytical expressions of passage times for hitting various thresholds, sojourn times of random excursions beyond the threshold and the extreme lengths attained during the lifetime of these model flagella. We identify different parameter regimes of this model flagellum that mimic those of the wildtype and mutants of a well known flagellated cell. By analysing our model in these different parameter regimes, we demonstrate how mutation can alter the level-crossing statistics even when the steady state length remains unaffected by the same mutation. Comparison of the theoretically predicted level crossing statistics, in addition to mean and variance of the length, in the steady state with the corresponding experimental data can be used in near future as stringent tests for the validity of the models of flagellar length control. The experimental data required for this purpose, though never reported till now, can be collected, in principle, using a method developed very recently for flagellar length fluctuations.