论文标题

重新构想城市配置:通过对抗性学习自动化城市规划

Reimagining City Configuration: Automated Urban Planning via Adversarial Learning

论文作者

Wang, Dongjie, Fu, Yanjie, Wang, Pengyang, Huang, Bo, Lu, Chang-Tien

论文摘要

城市规划是指设计土地使用配置的努力。有效的城市规划可以帮助减轻城市系统的运营和社会脆弱性,例如高税,犯罪,交通拥堵和事故,污染,抑郁和焦虑。由于城市系统的复杂性很高,因此这些任务主要由专业计划人员完成。但是,人类计划者需要更长的时间。深度学习的最新进展激发了我们问:机器能否以人类的能力自动和快速计算土地利用配置,因此人类规划人员最终可以根据特定需求调整机器生成的计划?为此,鉴于周围的空间环境,我们将自动化的城市规划问题提出为学习配置土地用途的任务。要设置任务,我们将土地使用配置定义为经度纬度通道张量,其中每个通道都是POIS类别,而条目的值是POIS的数量。然后,目标是提出一个对抗性学习框架,该框架可以自动为计划外的区域生成这种张量。特别是,我们首先通过使用地理和人类流动性数据从空间图中学习表征来表征未计划区域的周围区域的环境。其次,我们将每个计划外的区域及其周围环境表示形式组合为元组,并将所有元素分为正(计划良好的区域)和负样本(计划差的区域)。第三,我们开发了一种对抗性的土地利用配置方法,在该方法中,周围的上下文表示形式被送入生成器以生成土地使用配置,而歧视者学会了区分正面样本和负面样本。

Urban planning refers to the efforts of designing land-use configurations. Effective urban planning can help to mitigate the operational and social vulnerability of a urban system, such as high tax, crimes, traffic congestion and accidents, pollution, depression, and anxiety. Due to the high complexity of urban systems, such tasks are mostly completed by professional planners. But, human planners take longer time. The recent advance of deep learning motivates us to ask: can machines learn at a human capability to automatically and quickly calculate land-use configuration, so human planners can finally adjust machine-generated plans for specific needs? To this end, we formulate the automated urban planning problem into a task of learning to configure land-uses, given the surrounding spatial contexts. To set up the task, we define a land-use configuration as a longitude-latitude-channel tensor, where each channel is a category of POIs and the value of an entry is the number of POIs. The objective is then to propose an adversarial learning framework that can automatically generate such tensor for an unplanned area. In particular, we first characterize the contexts of surrounding areas of an unplanned area by learning representations from spatial graphs using geographic and human mobility data. Second, we combine each unplanned area and its surrounding context representation as a tuple, and categorize all the tuples into positive (well-planned areas) and negative samples (poorly-planned areas). Third, we develop an adversarial land-use configuration approach, where the surrounding context representation is fed into a generator to generate a land-use configuration, and a discriminator learns to distinguish among positive and negative samples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源