论文标题
具有绝热量子退火的量子增强的前景
Prospects for Quantum Enhancement with Diabatic Quantum Annealing
论文作者
论文摘要
我们评估量子退火(QA)一般框架内的算法的前景,以在组合优化和相关采样任务中相对于最新方法的经典状态实现量子加速。我们主张持续探索质量检查框架的兴趣,以改善的连贯性时间和控制能力将使文献中已经引入的几种启发式量子优化算法进行近期探索。这些连续的汉密尔顿计算算法依赖于比传统地面质量检查中更先进的控制协议,同时仍然比门模型实现中使用的控制协议要简单得多。将一致的绝症转变包含到激发状态会导致一种称为绝绝载量子退火(DQA)的概括,我们认为这是该框架内量子增强的最有希望的途径。传统质量检查的其他有希望的变体包括反向退火和连续的量子步行,以及用于机器学习的参数化量子电路Ansatzes的类似类似物。这些算法中的大多数都没有已知的(或可能被发现)有效的经典模拟,并且在许多情况下,有希望的(但有限)的早期迹象,可能会出现量子加速的可能性,这使得它们值得在中等规模的制度中使用量子硬件进行进一步研究。我们认为,所有这些协议都可以通过采用全方位的新型量子量子动力学来探讨,例如,时间依赖于时间依赖的有效跨场伊斯丁式汉密尔顿人产生的全部量子动力学,例如,可以通过电感耦合的通量量和预测在应用程序尺度上实现,这些动态可以由电感耦合量和预测。
We assess the prospects for algorithms within the general framework of quantum annealing (QA) to achieve a quantum speedup relative to classical state of the art methods in combinatorial optimization and related sampling tasks. We argue for continued exploration and interest in the QA framework on the basis that improved coherence times and control capabilities will enable the near-term exploration of several heuristic quantum optimization algorithms that have been introduced in the literature. These continuous-time Hamiltonian computation algorithms rely on control protocols that are more advanced than those in traditional ground-state QA, while still being considerably simpler than those used in gate-model implementations. The inclusion of coherent diabatic transitions to excited states results in a generalization called diabatic quantum annealing (DQA), which we argue for as the most promising route to quantum enhancement within this framework. Other promising variants of traditional QA include reverse annealing and continuous-time quantum walks, as well as analog analogues of parameterized quantum circuit ansatzes for machine learning. Most of these algorithms have no known (or likely to be discovered) efficient classical simulations, and in many cases have promising (but limited) early signs for the possibility of quantum speedups, making them worthy of further investigation with quantum hardware in the intermediate-scale regime. We argue that all of these protocols can be explored in a state-of-the-art manner by embracing the full range of novel out-of-equilibrium quantum dynamics generated by time-dependent effective transverse-field Ising Hamiltonians that can be natively implemented by, e.g., inductively-coupled flux qubits, both existing and projected at application scale.