论文标题
强场中的量子估计:原位浮动感应
Quantum Estimation in Strong Fields: in situ ponderomotive sensing
论文作者
论文摘要
我们开发了一个新框架,以优化和了解激光场参数的原位强场测量值。我们介绍了经历强场电离的电子的量子和经典渔民信息的第一个推导。这用于参数估计并表征与激光强度成正比的蓬源能量的不确定性。特别是,动量基础的量子和经典渔民信息随着时间的推移显示二次缩放。这可以与阈值电离干扰环相连,以在动量的基础上和“理想”量子测量值的“浮动相”。发现优先缩放率可以增加激光脉冲长度和强度。我们用它来证明激光强度的原位测量值,与使用电离速率的测量相比,高分辨率动量光谱具有将不确定性降低超过25美元的能力,同时使用“理想”量子测量将使其进一步减少$ 2.6 $。对于此框架,理论上对$ 2.8 \ times 10^{ - 3}〜\%$的订单的最小不确定性进行了理论。最后,我们检查了以前的原位测量值,该测量法制定了与实验程序相匹配的测量结果,并提出了如何改进的测量。
We develop a new framework to optimize and understand uncertainty from in situ strong field measurements of laser field parameters. We present the first derivation of quantum and classical Fisher information for an electron undergoing strong-field ionization. This is used for parameter estimation and to characterize the uncertainty of the ponderomotive energy, directly proportional to laser intensity. In particular, the quantum and classical Fisher information for the momentum basis displays quadratic scaling over time. This can be linked to above-threshold ionization interference rings for measurements in the momentum basis and to the `ponderomotive phase' for the `ideal' quantum measurements. Preferential scaling is found for increasing laser pulse length and intensity. We use this to demonstrate for in situ measurements of laser intensity, that high resolution momentum spectroscopy has the capacity to reduce the uncertainty by over $25$ times compared to measurements employing the ionization rate, while using the `ideal' quantum measurement would reduce it by a further factor of $2.6$. A minimum uncertainty of the order $2.8 \times 10^{-3}~\%$ is theorized for this framework. Finally, we examine previous in situ measurements formulating a measurement that matches the experimental procedure and suggest how to improve this.