论文标题
八元式布朗绕组
Octonionic Brownian Windings
论文作者
论文摘要
我们定义和研究沿布朗路径的绕组,在八度黎明的黎曼模型空间等静脉内,投影性和双曲线空间中的绕组。特别是,这些绕组的渐近定律被证明是平坦和球形几何形状的高斯,而双曲线绕组则表现出不同的长时间行为。
We define and study the windings along Brownian paths in the octonionic Euclidean, projective and hyperbolic spaces which are isometric to 8-dimensional Riemannian model spaces. In particular, the asymptotic laws of these windings are shown to be Gaussian for the flat and spherical geometries while the hyperbolic winding exhibits a different long time-behavior.