论文标题

在加权的对数 - 贝贝尔和对数狂热的不平等现象上

On weighted logarithmic-Sobolev & logarithmic-Hardy inequalities

论文作者

Das, Ujjal

论文摘要

对于$ n \ geq 3 $和$ p \ in(1,n)$,我们在l^1_ {loc}中寻找$ g \ in L^1_ {loc}(\ Mathbb {r}^n)$,可满足以下加权对数sobolev norquality:\ begin {equation*}} \ int _ {\ mathbb {r}^n} g | u |^p \ log | u |^p \ dx \ leqleqγ\ log \ left(c_γ\ int _ {\ mathbb {r} \ Mathcal {d}^{1,p} _0(\ Mathbb {r}^n)$,带有$ \ int _ {\ Mathbb {\ Mathbb {r}^n} g | u | U | U |^p = 1 $,对于某些$γ,C_γ> 0 $。对于(p,\ frac {np} {n-p}] $的每个$ r \,我们确定了一个banach函数空间$ \ mathcal {h} _ { \ Mathcal {h} _ {p,r}(\ Mathbb {r}^n)$。 $ \ MATHCAL {D}^{1,P} _0(\ MathBb {r}^n)$。对数Hardy不等式\ begin {qore*}} \ frac {n} {p} \ log \ left(\ text {c} \ int _ {\ mathbb {r}^n} \ frac {| \ nabla u |^p} c_c^{\ infty}(\ Mathbb {r}^n)$,带有$ \ displayStyle \ int \ int _ {\ Mathbb {r}^n} \ frac {| u |^p} {| u |^p} {| u | u | eu |δ_e|^|^|^|^{p(a+1)} = 1, $δ_e(x)$是$ x $和$ e $之间的距离。

For $N \geq 3$ and $p \in (1,N)$, we look for $g \in L^1_{loc}(\mathbb{R}^N)$ that satisfies the following weighted logarithmic Sobolev inequality: \begin{equation*} \int_{\mathbb{R}^N} g |u|^p \log |u|^p \ dx \leq γ\log \left( C_γ \int_{\mathbb{R}^N} |\nabla u|^p \ dx \right) \,, \end{equation*} for all $u \in \mathcal{D}^{1,p}_0(\mathbb{R}^N)$ with $\int_{\mathbb{R}^N} g|u|^p=1$, for some $γ,C_γ>0$. For each $r \in(p,\frac{Np}{N-p}]$, we identify a Banach function space $\mathcal{H}_{p,r}(\mathbb{R}^N)$ such that the above inequality holds for $g \in \mathcal{H}_{p,r}(\mathbb{R}^N)$. For $γ> \frac{r}{r-p}$, we also find a class of $g$ for which the best constant $C_γ$ in the above inequality is attained in $\mathcal{D}^{1,p}_0(\mathbb{R}^N)$. Further, for a closed set $E$ with Assouad dimension $=d<N$ and $a \in (-\frac{(N-d)(p-1)}{p},\frac{(N-p)(N-d)}{Np}),$ we establish the following logarithmic Hardy inequality \begin{equation*} \int_{\mathbb{R}^N} \frac{|u|^p}{|δ_E|^{p(a+1)}} \log \left(δ_E^{N-p-pa} |u|^p\right) \ dx \leq \frac{N}{p} \log \left(\text{C} \int_{\mathbb{R}^N} \frac{|\nabla u|^p}{|δ_E^{pa}|} \ dx \right) \,, \end{equation*} for all $u \in C_c^{\infty}(\mathbb{R}^N)$ with $\displaystyle \int_{\mathbb{R}^N} \frac{|u|^p}{|δ_E|^{p(a+1)}} =1,$ for some $\text{C}>0$, where $δ_E(x)$ is the distance between $x$ and $E$. The second order extension of the logarithmic Hardy inequality is also obtained.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源