论文标题

在串联平行图的混合线性布局上

On Mixed Linear Layouts of Series-Parallel Graphs

论文作者

Angelini, Patrizio, Bekos, Michael A., Kindermann, Philipp, Mchedlidze, Tamara

论文摘要

图形的混合S堆栈Q-Quesue布局由其顶点的线性顺序和将其边缘的划分分成S堆栈和Q队列,因此同一堆栈十字架中没有两个边缘,在同一队列巢中没有两个边缘。 1992年,希思(Heath)和罗森伯格(Rosenberg)猜想每个平面图都允许使用混合的1件1- Queue布局。最近,PupyRev通过证明不承认1堆栈1 Queue布局的平面部分3树的猜想反驳了这一猜想。在本说明中,我们通过证明猜想甚至在2个树(也称为串联平行图)中也不成立来增强pupyrev的结果。

A mixed s-stack q-queue layout of a graph consists of a linear order of its vertices and of a partition of its edges into s stacks and q queues, such that no two edges in the same stack cross and no two edges in the same queue nest. In 1992, Heath and Rosenberg conjectured that every planar graph admits a mixed 1-stack 1-queue layout. Recently, Pupyrev disproved this conjectured by demonstrating a planar partial 3-tree that does not admit a 1-stack 1-queue layout. In this note, we strengthen Pupyrev's result by showing that the conjecture does not hold even for 2-trees, also known as series-parallel graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源