论文标题

基于深度传递学习的复合金属氧化物光学材料的逆设计

Inverse Design of Composite Metal Oxide Optical Materials based on Deep Transfer Learning

论文作者

Dong, Rongzhi, Dan, Yabo, Li, Xiang, Hu, Jianjun

论文摘要

具有特殊光学特性的光学材料被广泛用于广泛的技术,从计算机显示到太阳能利用率,导致从多年的广泛材料合成和光学表征积累的大型数据集。以前,已经开发了机器学习模型来预测材料表征图像的光吸收光谱,反之亦然。本文中,我们提出了TLOPT,这是一种基于转移学习的逆光学材料设计算法,用于建议具有所需目标光吸收光谱的材料组成。我们的方法基于深层神经网络模型和包括遗传算法和贝叶斯优化的全球优化算法的组合。采用转移学习策略来解决小型数据集问题,用于使用Magpie材料组成的描述训练光吸收光谱的神经网络预测指标。我们的广泛实验表明,我们的算法可以以高精度的化学计量来逆设计材料组成。

Optical materials with special optical properties are widely used in a broad span of technologies, from computer displays to solar energy utilization leading to large dataset accumulated from years of extensive materials synthesis and optical characterization. Previously, machine learning models have been developed to predict the optical absorption spectrum from a materials characterization image or vice versa. Herein we propose TLOpt, a transfer learning based inverse optical materials design algorithm for suggesting material compositions with a desired target light absorption spectrum. Our approach is based on the combination of a deep neural network model and global optimization algorithms including a genetic algorithm and Bayesian optimization. A transfer learning strategy is employed to solve the small dataset issue in training the neural network predictor of optical absorption spectrum using the Magpie materials composition descriptor. Our extensive experiments show that our algorithm can inverse design the materials composition with stoichiometry with high accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源