论文标题

敏感信息检测:用于编码环境的递归神经网络

Sensitive Information Detection: Recursive Neural Networks for Encoding Context

论文作者

Neerbek, Jan

论文摘要

处理和分类的数据量以不断增长的速度增长。同时,政府和企业对组织,政府和企业的协作和透明度的需求将数据从内部存储库释放到公众或第三方领域。反过来,这增加了共享敏感信息的潜力。敏感信息的泄漏对于组织在财务上都可能非常昂贵,而且对于个人而言。在这项工作中,我们解决了敏感信息检测的重要问题。特别是我们专注于非结构化文本文档中的检测。 我们表明,用于检测敏感信息的简单,脆弱的规则集仅找到实际敏感信息的一小部分。此外,我们表明,以前的最新方法是针对这种简单的场景量身定制的,因此无法检测到实际的敏感内容。我们开发了一种新型的敏感信息检测方法,该方法仅假设访问标记的示例,而不是不切实际的假设,例如访问一组生成规则或描述性局部种子单词。我们的方法灵感来自当前用于释义检测的最新方法,我们对递归神经网络的深度学习方法适应了敏感信息检测的问题。我们表明,我们的基于上下文的方法极大地超过了先前最先进的方法的敏感信息检测的家族,所谓的基于关键字的方法,在现实世界数据以及人类标记的敏感和非敏感文档的示例上。

The amount of data for processing and categorization grows at an ever increasing rate. At the same time the demand for collaboration and transparency in organizations, government and businesses, drives the release of data from internal repositories to the public or 3rd party domain. This in turn increase the potential of sharing sensitive information. The leak of sensitive information can potentially be very costly, both financially for organizations, but also for individuals. In this work we address the important problem of sensitive information detection. Specially we focus on detection in unstructured text documents. We show that simplistic, brittle rule sets for detecting sensitive information only find a small fraction of the actual sensitive information. Furthermore we show that previous state-of-the-art approaches have been implicitly tailored to such simplistic scenarios and thus fail to detect actual sensitive content. We develop a novel family of sensitive information detection approaches which only assumes access to labeled examples, rather than unrealistic assumptions such as access to a set of generating rules or descriptive topical seed words. Our approaches are inspired by the current state-of-the-art for paraphrase detection and we adapt deep learning approaches over recursive neural networks to the problem of sensitive information detection. We show that our context-based approaches significantly outperforms the family of previous state-of-the-art approaches for sensitive information detection, so-called keyword-based approaches, on real-world data and with human labeled examples of sensitive and non-sensitive documents.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源