论文标题

深层增强学习,用于小分子的结构演变

Deep Inverse Reinforcement Learning for Structural Evolution of Small Molecules

论文作者

Agyemang, Brighter, Wu, Wei-Ping, Addo, Daniel, Kpiebaareh, Michael Y., Nanor, Ebenezer, Haruna, Charles Roland

论文摘要

药物发现管道的化学库的大小和质量对于开发新药或重新利用现有药物至关重要。现有技术(例如组合有机合成和高通量筛选)通常会使过程变得非常强大,因此,由于合成可行的药物的搜索空间非常巨大。尽管文献中主要利用了增强学习来生成新颖的化合物,但设计一种简洁地代表学习目标的奖励功能的要求可能会在某些复杂的领域中艰难。基于生成的对抗网络方法也大多在训练后丢弃歧视者,并且很难训练。在这项研究中,我们提出了一个框架来训练复合发生器,并根据熵最大化逆增强学习范式学习可转移的奖励功能。我们从实验中表明,逆增强学习路线提供了一种合理的替代方案,用于在奖励功能工程可能较小或不可能的范围内生成化学化合物,而在显示出所需目标的数据时,我们可以轻松地吸引人或不可能。

The size and quality of chemical libraries to the drug discovery pipeline are crucial for developing new drugs or repurposing existing drugs. Existing techniques such as combinatorial organic synthesis and High-Throughput Screening usually make the process extraordinarily tough and complicated since the search space of synthetically feasible drugs is exorbitantly huge. While reinforcement learning has been mostly exploited in the literature for generating novel compounds, the requirement of designing a reward function that succinctly represents the learning objective could prove daunting in certain complex domains. Generative Adversarial Network-based methods also mostly discard the discriminator after training and could be hard to train. In this study, we propose a framework for training a compound generator and learning a transferable reward function based on the entropy maximization inverse reinforcement learning paradigm. We show from our experiments that the inverse reinforcement learning route offers a rational alternative for generating chemical compounds in domains where reward function engineering may be less appealing or impossible while data exhibiting the desired objective is readily available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源