论文标题

使用视频级标签用于异常检测的自我复杂框架

A Self-Reasoning Framework for Anomaly Detection Using Video-Level Labels

论文作者

Zaheer, Muhammad Zaigham, Mahmood, Arif, Shin, Hochul, Lee, Seung-Ik

论文摘要

监视视频中的异常事件检测是图像和视频处理社区中的一个具有挑战性且实用的研究问题。与异常事件的框架级注释相比,尽管这样的高级标签可能包含明显的噪音,但获得视频级别的注释非常快,便宜。更具体地说,标有异常的视频实际上可能仅在短时间内包含异常,而其余的视频帧可能是正常的。在当前的工作中,我们提出了一个基于深层神经网络的弱监督的异常检测框架,该框架仅使用视频级标签以自我调查的方式进行培训。为了进行基于自我调查的培训,我们通过使用时空视频功能的二进制聚类来生成伪标签,这有助于减轻异常视频标签中存在的噪音。我们提出的配方鼓励主网络和聚类既可以相互补充,以实现更准确的异常检测目标。该提议的框架已在包括UCF-Crime,Shanghaitech和UCSD PED2(包括UCF-Crime和UCSD PED2)的公开现实世界检测数据集上进行了评估。实验证明了我们提出的框架优于当前最新方法。

Anomalous event detection in surveillance videos is a challenging and practical research problem among image and video processing community. Compared to the frame-level annotations of anomalous events, obtaining video-level annotations is quite fast and cheap though such high-level labels may contain significant noise. More specifically, an anomalous labeled video may actually contain anomaly only in a short duration while the rest of the video frames may be normal. In the current work, we propose a weakly supervised anomaly detection framework based on deep neural networks which is trained in a self-reasoning fashion using only video-level labels. To carry out the self-reasoning based training, we generate pseudo labels by using binary clustering of spatio-temporal video features which helps in mitigating the noise present in the labels of anomalous videos. Our proposed formulation encourages both the main network and the clustering to complement each other in achieving the goal of more accurate anomaly detection. The proposed framework has been evaluated on publicly available real-world anomaly detection datasets including UCF-crime, ShanghaiTech and UCSD Ped2. The experiments demonstrate superiority of our proposed framework over the current state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源