论文标题

使用深度外部学习和带有多模式图像先验的指导性残留密度网络的无监督MRI超分辨率

Unsupervised MRI Super-Resolution Using Deep External Learning and Guided Residual Dense Network with Multimodal Image Priors

论文作者

Iwamoto, Yutaro, Takeda, Kyohei, Li, Yinhao, Shiino, Akihiko, Chen, Yen-Wei

论文摘要

深度学习技术导致具有自然图像的最新图像超级分辨率。通常,使用成对的高分辨率和低分辨率图像来训练深度学习模型。这些技术也已应用于医学图像超分辨率。医学图像的特征在几种方面与自然图像有很大不同。首先,由于成像系统和临床要求的局限性,很难获得实际临床应用训练的高分辨率图像。其次,还有其他模态高分辨率图像可用(例如,高分辨率T1加权图像可用于增强低分辨率T2加权图像)。在本文中,我们提出了一种基于人类解剖学的简单知识的无监督图像超分辨率技术。该技术不需要目标T2WI高分辨率图像进行训练。此外,我们提出了一个带有指导的残留致密网络,该网络结合了一个残留的密集网络,并带有引导深度卷积神经网络,以通过指代同一主题的不同模态高分辨率图像来增强低分辨率图像的分辨率。公开可用的大脑MRI数据库的实验表明,我们所提出的方法比最先进的方法更好。

Deep learning techniques have led to state-of-the-art image super resolution with natural images. Normally, pairs of high-resolution and low-resolution images are used to train the deep learning models. These techniques have also been applied to medical image super-resolution. The characteristics of medical images differ significantly from natural images in several ways. First, it is difficult to obtain high-resolution images for training in real clinical applications due to the limitations of imaging systems and clinical requirements. Second, other modal high-resolution images are available (e.g., high-resolution T1-weighted images are available for enhancing low-resolution T2-weighted images). In this paper, we propose an unsupervised image super-resolution technique based on simple prior knowledge of the human anatomy. This technique does not require target T2WI high-resolution images for training. Furthermore, we present a guided residual dense network, which incorporates a residual dense network with a guided deep convolutional neural network for enhancing the resolution of low-resolution images by referring to different modal high-resolution images of the same subject. Experiments on a publicly available brain MRI database showed that our proposed method achieves better performance than the state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源