论文标题

具有灵活原子的对称关系代数的网络满意度问题的复杂性

The Complexity of Network Satisfaction Problems for Symmetric Relation Algebras with a Flexible Atom

论文作者

Bodirsky, Manuel, Knäuer, Simon

论文摘要

罗宾·赫希(Robin Hirsch)于1996年提出的“真正的复杂性问题”:对所有有限关系代数A的网络满意度问题的计算复杂性进行分类。我们为A是对称的情况并具有灵活的原子提供了完整的分类;在这种情况下,问题是NP完成或在P中。分类任务可以简化为A是积分的情况。如果有限的积分关系代数具有灵活的原子,则它具有正常的表示。然后,我们可以通过分析B的多态性来研究A网络满意度问题的计算复杂性。

Robin Hirsch posed in 1996 the 'Really Big Complexity Problem': classify the computational complexity of the network satisfaction problem for all finite relation algebras A. We provide a complete classification for the case that A is symmetric and has a flexible atom; in this case, the problem is NP-complete or in P. The classification task can be reduced to the case where A is integral. If a finite integral relation algebra has a flexible atom, then it has a normal representation B. We can then study the computational complexity of the network satisfaction problem of A using the universal-algebraic approach, via an analysis of the polymorphisms of B. We also use a Ramsey-type result of Nešetřil and Rödl and a complexity dichotomy result of Bulatov for conservative finite-domain constraint satisfaction problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源