论文标题

DMD:一个大规模的多模式驱动程序监视数据集,以供注意力和警觉性分析

DMD: A Large-Scale Multi-Modal Driver Monitoring Dataset for Attention and Alertness Analysis

论文作者

Ortega, Juan Diego, Kose, Neslihan, Cañas, Paola, Chao, Min-An, Unnervik, Alexander, Nieto, Marcos, Otaegui, Oihana, Salgado, Luis

论文摘要

视觉是驾驶员监测系统(DMS)的最丰富,最具成本效益的技术,尤其是在最近的深度学习成功(DL)方法之后。目前,缺乏足够大且全面的数据集是DMS开发进步的瓶颈,这对于从SAE Level-2到SAE级别3级别的自动驾驶至关重要。在本文中,我们介绍了驱动程序监视数据集(DMD),这是一个广泛的数据集,其中包括真实和模拟的驾驶场景:分散注意力,凝视分配,嗜睡,手动相互作用和上下文数据,在41小时的RGB,DEPTH,DEPTH和IR视频中,来自3个摄像机,捕获面部,身体和37个驾驶员的手动。包括与现有类似数据集的比较,这表明DMD更广泛,多样和多功能。通过提取其中包含13个干扰活动的DBEHAVIOURMD数据集来说明DMD的用法,该数据集准备在DL培训过程中使用。此外,我们提出了一个可靠的实时驱动程序行为识别系统,该系统针对现实世界的应用程序,该应用程序可以基于DBEHAVIOURMD在具有成本效益的仅CPU平台上运行。它的性能通过不同类型的融合策略进行评估,所有类型的融合策略都达到了增强的精度,仍提供实时响应。

Vision is the richest and most cost-effective technology for Driver Monitoring Systems (DMS), especially after the recent success of Deep Learning (DL) methods. The lack of sufficiently large and comprehensive datasets is currently a bottleneck for the progress of DMS development, crucial for the transition of automated driving from SAE Level-2 to SAE Level-3. In this paper, we introduce the Driver Monitoring Dataset (DMD), an extensive dataset which includes real and simulated driving scenarios: distraction, gaze allocation, drowsiness, hands-wheel interaction and context data, in 41 hours of RGB, depth and IR videos from 3 cameras capturing face, body and hands of 37 drivers. A comparison with existing similar datasets is included, which shows the DMD is more extensive, diverse, and multi-purpose. The usage of the DMD is illustrated by extracting a subset of it, the dBehaviourMD dataset, containing 13 distraction activities, prepared to be used in DL training processes. Furthermore, we propose a robust and real-time driver behaviour recognition system targeting a real-world application that can run on cost-efficient CPU-only platforms, based on the dBehaviourMD. Its performance is evaluated with different types of fusion strategies, which all reach enhanced accuracy still providing real-time response.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源