论文标题
动力学模型的宏观极限,该模型描述了通过二进制相互作用的T细胞迁移模式中的开关
Macroscopic limit of a kinetic model describing the switch in T cell migration modes via binary interactions
论文作者
论文摘要
对癌症免疫反应的实验结果表明,通过与树突状细胞(DCS)相互作用,细胞毒性T淋巴细胞(CTL)的激活会触发CTL迁移模式的变化。特别是,虽然前激活状态中的CTL以非本地搜索模式移动,但激活的CTL的搜索模式却更具局部化。在本文中,我们为CTL迁移模式中的这种开关开发了动力学模型。该模型作为在前激活状态,激活的CTL和DC中的一颗粒子分布函数的平衡方程式的耦合系统配方。 CTL激活是通过前激活状态和DC中CTL之间的二进制相互作用来建模的。此外,细胞运动被表示为速度跳跃过程,在长尾巴分布后,CTL的运行时间与Lévy步行一致,并且在Poisson分布后激活的CTL的运行时间是一致的,与Brownian运动相对应。我们正式表明,该模型的宏观极限包括一个平衡方程的耦合系统,用于细胞密度,通过经典扩散项来描述激活的CTL运动,而分数扩散术语描述了前激活状态中CTL的运动。此处介绍的建模方法及其可能的概括有望在研究对癌症的免疫反应研究中找到应用,在其他生物学环境中,从非本地迁移模式发生转变为局部迁移模式。
Experimental results on the immune response to cancer indicate that activation of cytotoxic T lymphocytes (CTLs) through interactions with dendritic cells (DCs) can trigger a change in CTL migration patterns. In particular, while CTLs in the pre-activation state move in a non-local search pattern, the search pattern of activated CTLs is more localised. In this paper, we develop a kinetic model for such a switch in CTL migration modes. The model is formulated as a coupled system of balance equations for the one-particle distribution functions of CTLs in the pre-activation state, activated CTLs and DCs. CTL activation is modelled via binary interactions between CTLs in the pre-activation state and DCs. Moreover, cell motion is represented as a velocity-jump process, with the running time of CTLs in the pre-activation state following a long-tailed distribution, which is consistent with a Lévy walk, and the running time of activated CTLs following a Poisson distribution, which corresponds to Brownian motion. We formally show that the macroscopic limit of the model comprises a coupled system of balance equations for the cell densities whereby activated CTL movement is described via a classical diffusion term, whilst a fractional diffusion term describes the movement of CTLs in the pre-activation state. The modelling approach presented here and its possible generalisations are expected to find applications in the study of the immune response to cancer and in other biological contexts in which switch from non-local to localised migration patterns occurs.