论文标题
房间内振荡温度场的Koopman模式分解
Koopman Mode Decomposition of Oscillatory Temperature Field inside a Room
论文作者
论文摘要
Koopman模式分解(KMD)是一种非线性时间序列分析的技术,能够将复杂时空时间动力学的数据分解为多种模式,以单个频率(称为Koopman模式(KMS))振荡。我们将KMD应用于房间内温度场振荡动力学的测量数据,这在我们的日常生活中是一种复杂的现象,并且在节能空调方面具有清晰的技术动机。为了表征不仅表征振荡场(标量场),还表征相关的热通量(向量场),我们使用km的空间梯度引入了温度梯度的概念。通过直接从数据估算温度梯度,我们表明KMD能够提取嵌入在振荡温度场中的热通量的独特结构,这与空调有关。
Koopman mode decomposition (KMD) is a technique of nonlinear time-series analysis capable of decomposing data on complex spatio temporal dynamics into multiple modes oscillating with single frequencies, called the Koopman modes (KMs). We apply KMD to measurement data on oscillatory dynamics of a temperature field inside a room that is a complex phenomenon ubiquitous in our daily lives and has a clear technological motivation in energy-efficient air conditioning. To characterize not only the oscillatory field (scalar field) but also associated heat flux (vector field), we introduce the notion of a temperature gradient using the spatial gradient of a KM. By estimating the temperature gradient directly from data, we show that KMD is capable of extracting a distinct structure of the heat flux embedded in the oscillatory temperature field, relevant in terms of air conditioning.