论文标题

中央对称复合物和下限定理的应力

The stresses on centrally symmetric complexes and the lower bound theorems

论文作者

Novik, Isabella, Zheng, Hailun

论文摘要

1987年,史丹利(Stanley)猜想,如果中央对称的cohen--macaulay simpericial simpericial complect $ dimension $ d-1 $的$ d-1 $满足$ h_i(δ)= \ binom {d} {i} {i} $ for Some $ i \ geQ 1 $,然后最近,Klee,Nevo,Novik和Zheng猜想,如果中央对称的简单polytope $ p $ dimension $ d $的$ d $满足$ g_i(\ partial p)= \ binom {d} {d} {i} {i} {i} - \ binom {d} $ gee pe 1 q e qe {i-d} $ deq $ deq $ d y q \ q ge q y q eq $ d iq $ g_j(\ partial p)= \ binom {d} {j} - \ binom {d} {d} {j-1} $ for ALL $ d/2 \ geq j \ geq i $。本说明使用应力空间来证明这两个猜想。

In 1987, Stanley conjectured that if a centrally symmetric Cohen--Macaulay simplicial complex $Δ$ of dimension $d-1$ satisfies $h_i(Δ)=\binom{d}{i}$ for some $i\geq 1$, then $h_j(Δ)=\binom{d}{j}$ for all $j\geq i$. Much more recently, Klee, Nevo, Novik, and Zheng conjectured that if a centrally symmetric simplicial polytope $P$ of dimension $d$ satisfies $g_i(\partial P)=\binom{d}{i}-\binom{d}{i-1}$ for some $d/2\geq i\geq 1$, then $g_j(\partial P)=\binom{d}{j}-\binom{d}{j-1}$ for all $d/2\geq j\geq i$. This note uses stress spaces to prove both of these conjectures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源