论文标题
Cygnus:对暗物质和中微子有方向敏感的核后坐线路的可行性
CYGNUS: Feasibility of a nuclear recoil observatory with directional sensitivity to dark matter and neutrinos
论文作者
论文摘要
既然传统的弱相互作用的巨大粒子(WIMP)暗物质搜索正在接近中微子地板,那么人们对探测器对核后坐方向的敏感性产生了兴趣。大规模定向检测器具有吸引力,因为它的灵敏度在中微子地板下方,能够明确地建立所谓的暗物质信号的银河系来源,并且可以作为中微子天文台双重目的。我们介绍了1000 m $^3 $尺度检测器的第一个详细分析,该检测器能够测量低能量处的方向性核后坐力信号。我们提出了一个模块化和多站点的天文台,该天文台包括时间投影室(TPC)在大气压力下装有氦气和SF $ _6 $。根据TPC读数技术,在6 KEVR上方的10-20架氦后坐力或仅在20 keVR以上的3-4个后坐力足以将10 GEV WIMP信号与太阳中微子背景区分开。高分辨率电荷读数还可以使强大的电子背景拒绝功能低于10 KEV。我们以1000 m $^3 $ scale的身份详细说明背景和站点要求,并确定需要改善放射性功能的材料。我们称Cygnus-1000的最终实验将能够根据最终能量阈值观察到太阳的10-40个中微子。通过相同的暴露,对旋转独立横截面的敏感性将延伸至目前未开发的sub-10 GEV参数空间。对于旋转依赖的相互作用,已经进行了10 m $^3 $ -Scale实验可以与即将到来的两个探测器竞争,但是Cygnus-1000可以大大改善这一点。较大的体积会从更广泛的来源(包括银河系超新星,核反应堆和地质过程)带来对中微子的敏感性。
Now that conventional weakly interacting massive particle (WIMP) dark matter searches are approaching the neutrino floor, there has been a resurgence of interest in detectors with sensitivity to nuclear recoil directions. A large-scale directional detector is attractive in that it would have sensitivity below the neutrino floor, be capable of unambiguously establishing the galactic origin of a purported dark matter signal, and could serve a dual purpose as a neutrino observatory. We present the first detailed analysis of a 1000 m$^3$-scale detector capable of measuring a directional nuclear recoil signal at low energies. We propose a modular and multi-site observatory consisting of time projection chambers (TPCs) filled with helium and SF$_6$ at atmospheric pressure. Depending on the TPC readout technology, 10-20 helium recoils above 6 keVr or only 3-4 recoils above 20 keVr would suffice to distinguish a 10 GeV WIMP signal from the solar neutrino background. High-resolution charge readout also enables powerful electron background rejection capabilities well below 10 keV. We detail background and site requirements at the 1000 m$^3$-scale, and identify materials that require improved radiopurity. The final experiment, which we name CYGNUS-1000, will be able to observe 10-40 neutrinos from the Sun, depending on the final energy threshold. With the same exposure, the sensitivity to spin independent cross sections will extend into presently unexplored sub-10 GeV parameter space. For spin dependent interactions, already a 10 m$^3$-scale experiment could compete with upcoming generation-two detectors, but CYGNUS-1000 would improve upon this considerably. Larger volumes would bring sensitivity to neutrinos from an even wider range of sources, including galactic supernovae, nuclear reactors, and geological processes.