论文标题

多维功能数据的低秩协方差函数估计

Low-Rank Covariance Function Estimation for Multidimensional Functional Data

论文作者

Wang, Jiayi, Wong, Raymond K. W., Zhang, Xiaoke

论文摘要

如今,多维功能数据来自许多字段。协方差函数在分析这种日益常见的数据中起着重要作用。在本文中,我们提出了一种新型的非参数协方差函数估计方法,该方法在复制内核希尔伯特空间(RKHS)的框架下,可以处理稀疏和密集的功能数据。我们将(有限维)张量的多线性等级结构扩展到功能,从而可以灵活地建模协方差算子和边缘结构。提出的框架可以保证所得估计器自动半阳性确定,并且可以结合各种光谱正规化。特别是痕量 - 正则化可以促进协方差算子和边缘结构的低级。尽管缺乏封闭形式,但在温和的假设下,所提出的估计器可以实现统一的理论结果,这些结果对于样本量和每个样品场观测值之间的任何相对幅度持有统一的理论结果,并且收敛速度揭示了“相位转换”现象,从稀疏到密集的功能数据。基于新的代表定理,为痕迹正则化开发了ADMM算法。通过模拟研究和ARGO项目数据集的分析证明了拟议估计器的吸引力数值性能。

Multidimensional function data arise from many fields nowadays. The covariance function plays an important role in the analysis of such increasingly common data. In this paper, we propose a novel nonparametric covariance function estimation approach under the framework of reproducing kernel Hilbert spaces (RKHS) that can handle both sparse and dense functional data. We extend multilinear rank structures for (finite-dimensional) tensors to functions, which allow for flexible modeling of both covariance operators and marginal structures. The proposed framework can guarantee that the resulting estimator is automatically semi-positive definite, and can incorporate various spectral regularizations. The trace-norm regularization in particular can promote low ranks for both covariance operator and marginal structures. Despite the lack of a closed form, under mild assumptions, the proposed estimator can achieve unified theoretical results that hold for any relative magnitudes between the sample size and the number of observations per sample field, and the rate of convergence reveals the "phase-transition" phenomenon from sparse to dense functional data. Based on a new representer theorem, an ADMM algorithm is developed for the trace-norm regularization. The appealing numerical performance of the proposed estimator is demonstrated by a simulation study and the analysis of a dataset from the Argo project.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源