论文标题
迈向人性化的,自动学习混合层的反馈控制
Towards human-interpretable, automated learning of feedback control for the mixing layer
论文作者
论文摘要
我们提出了从控制定律的集合和相关时间分辨的流程快照对流量控制行为的自动分析。输入可以是机器学习控制的丰富数据库(MLC),优化了工厂成本功能的反馈定律。提出的方法提供了(1)对控制景观的见解,将控制定律映射到包括超级和山脊线在内的绩效,(2)代表性流量状态的目录及其对所研究控制法律的成本函数的贡献,以及(3)动态的可视化。关键推动力是分类和特征机器学习的提取方法。该分析成功地应用于使用基于传感器的反馈驱动上游执行器的混合层的稳定。波动能量减少了26 \%。该控件用较低能量的更高频率开尔文 - 霍尔姆尔兹(Kelvin-Helmholtz)结构代替了未强制的开尔文 - 霍尔姆尔兹涡流。这些努力针对人类对MLC的可解释,完全自动化的分析,以识别质量不同的致动系统,提炼相应的相干结构并开发植物的数字双胞胎。
We propose an automated analysis of the flow control behaviour from an ensemble of control laws and associated time-resolved flow snapshots. The input may be the rich data base of machine learning control (MLC) optimizing a feedback law for a cost function in the plant. The proposed methodology provides (1) insights into control landscape which maps control laws to performance including extrema and ridge-lines, (2) a catalogue of representative flow states and their contribution to cost function for investigated control laws and (3) a visualization of the dynamics. Key enablers are classification and feature extraction methods of machine learning. The analysis is successfully applied to the stabilization of a mixing layer with sensor-based feedback driving an upstream actuator. The fluctuation energy is reduced by 26\%. The control replaces unforced Kelvin-Helmholtz vortices with subsequent vortex pairing by higher-frequency Kelvin-Helmholtz structures of lower energy. These efforts target a human interpretable, fully automated analysis of MLC identifying qualitatively different actuation regimes, distilling corresponding coherent structures, and developing a digital twin of the plant.