论文标题
Borel层次结构中$ \ ell^p $空间的交叉点
Intersections of $\ell^p$ spaces in the Borel hierarchy
论文作者
论文摘要
我们表明,如果$ y $是$ \ ell^q $,$ c_0 $,$ \ ell^\ eeld^\ infty $或$ {\ bigcap_ {p> b}} \ ell^p $ $ 0 <q,bigcap_ {p> b}} \ ell^p $其中在$ y $中正确,然后在第三级的乘法类中,$ \ textstyle \ bigcap_ {p> a} \ ell^p $首先出现在$ y $的borel层次结构中。特别是$ \ textstyle \ bigcap_ {p> a} \ ell^p $既不是$f_σ$,也不是$g_Δ$ $ y $的子集。这回答了Nestoridis的问题。该结果提供了一个自然的示例,即在Borel层次结构的第三层中进行集合,在其帮助下,我们还在第四级给出了一些示例。
We show that if $Y$ is one of the spaces $\ell^q$, $c_0$, $\ell^\infty$ or ${\textstyle \bigcap_{p > b}} \ell^p$ where $0 < q,b < \infty$, and the Fréchet space $\textstyle \bigcap_{p > a} \ell^p$ is contained in $Y$ properly, then $\textstyle \bigcap_{p > a} \ell^p$ first shows up in the Borel hierarchy of $Y$ at the multiplicative class of the third level. In particular $\textstyle \bigcap_{p > a} \ell^p$ is neither an $F_σ$ nor a $G_δ$ subset of $Y$. This answers a question by Nestoridis. This result provides a natural example of a set in the third level of the Borel hierarchy and with its help we also give some examples in the fourth level.