论文标题
Drinfeld模块模量空间的环形压缩
Toroidal compactifications of the moduli spaces of Drinfeld modules
论文作者
论文摘要
我们构建了drinfeld $ \ mathbb {f} _q [t] $ d $ d $的模量$ n $结构的模量$ n $结构的模态空间的环形压实,作为级别$ n $结构的级别$ n $ struction的级别drinfeld模块的级别$ d $ d $的模块。环形压缩是与有理锥分解相关的日志规则方案,其中有常规的方案。为了构建这些环形紧凑,我们炸毁了粉红色的萨克蛋白压实,并采用了正式模量理论和迭代的潮汐均匀化过程。
We construct toroidal compactifications of the moduli spaces of Drinfeld $\mathbb{F}_q[T]$-modules of rank $d$ with level $N$ structure as moduli spaces of log Drinfeld modules of rank $d$ with level $N$ structure. The toroidal compactifications are log regular schemes associated to rational cone decompositions, and there are regular ones among them. To construct these toroidal compactifications, we blow up the Satake compactification of Pink and employ the theory of formal moduli and a process of iterated Tate uniformization.