论文标题
稳定剂的稳定弱绿素有限元方法在多面眼网上:第二部分
A stabilizer free weak Galerkin finite element method on polytopal mesh: Part II
论文作者
论文摘要
在本文的第一部分中引入了无稳定剂弱弱Galerkin(WG)有限元方法(J.Comput。Appl。Math,371(2020)112699。ARXIV:1906.06634。),从不连续的有限元元件方法中删除稳定器,从而简化了稳定器,并简化了编程的功能。本文的目的是引入一种新的WG方法,而无需稳定稳定器,该方法具有收敛速率的一个订单,高于最佳收敛速率。该方法是在多面网格上实现超授权的第一种WG方法。提出了2D和3D中的数值示例,以验证定理。
A stabilizer free weak Galerkin (WG) finite element method on polytopal mesh has been introduced in Part I of this paper (J. Comput. Appl. Math, 371 (2020) 112699. arXiv:1906.06634.) Removing stabilizers from discontinuous finite element methods simplifies formulations and reduces programming complexity. The purpose of this paper is to introduce a new WG method without stabilizers on polytopal mesh that has convergence rates one order higher than optimal convergence rates. This method is the first WG method that achieves superconvergence on polytopal mesh. Numerical examples in 2D and 3D are presented verifying the theorem.