论文标题

NATS板凳:为建筑拓扑和大小的基准测试NAS算法

NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size

论文作者

Dong, Xuanyi, Liu, Lu, Musial, Katarzyna, Gabrys, Bogdan

论文摘要

神经架构搜索(NAS)引起了很多关注,并已被说明,在过去几年中,在大量应用中带来了切实的好处。建筑拓扑和体系结构的规模被认为是深度学习模型表现的两个最重要方面,社区为神经体系结构的两个方面都催生了许多搜索算法。但是,在不同的搜索空间和培训设置下,从这些搜索算法中获得的性能提高。这使得算法在某种程度上无与伦比的总体性能,并且搜索模型的子模块的改进不清楚。在本文中,我们建议(几乎)任何最新的NAS算法,提出了Nats-Bench,这是搜索拓扑和大小的统一基准。 Nats-Bench包括用于建筑拓扑的15,625个神经细胞候选者的搜索空间,三个数据集上的建筑尺寸为32,768。我们根据搜索空间中所有候选人的各种标准和绩效比较来分析基准的有效性。我们还通过基准在其上进行了13种最新的NAS算法来显示Nats Bench的多功能性。为每个候选人提供了使用相同设置培训的所有日志和诊断信息。这促进了更大的研究人员社区,专注于在更可比和计算成本友好的环境中开发更好的NAS算法。所有代码均可在以下网址公开获取:https://xuanyidong.com/assets/projects/nats-bench。

Neural architecture search (NAS) has attracted a lot of attention and has been illustrated to bring tangible benefits in a large number of applications in the past few years. Architecture topology and architecture size have been regarded as two of the most important aspects for the performance of deep learning models and the community has spawned lots of searching algorithms for both aspects of the neural architectures. However, the performance gain from these searching algorithms is achieved under different search spaces and training setups. This makes the overall performance of the algorithms to some extent incomparable and the improvement from a sub-module of the searching model unclear. In this paper, we propose NATS-Bench, a unified benchmark on searching for both topology and size, for (almost) any up-to-date NAS algorithm. NATS-Bench includes the search space of 15,625 neural cell candidates for architecture topology and 32,768 for architecture size on three datasets. We analyze the validity of our benchmark in terms of various criteria and performance comparison of all candidates in the search space. We also show the versatility of NATS-Bench by benchmarking 13 recent state-of-the-art NAS algorithms on it. All logs and diagnostic information trained using the same setup for each candidate are provided. This facilitates a much larger community of researchers to focus on developing better NAS algorithms in a more comparable and computationally cost friendly environment. All codes are publicly available at: https://xuanyidong.com/assets/projects/NATS-Bench.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源