论文标题

无监督的域适应性,并进行了逐步适应子空间

Unsupervised Domain Adaptation with Progressive Adaptation of Subspaces

论文作者

Li, Weikai, Chen, Songcan

论文摘要

无监督的域适应性(UDA)旨在通过从标记的源域中转移知识,并以域移动来分类未标记的目标域。大多数现有的UDA方法试图通过减少域差异来减轻转移引起的不利影响。但是,由于目标域缺乏标签,这种方法很容易遭受臭名昭著的模式崩溃问题。自然,减轻此问题的有效方法之一是可靠地估计目标域的伪标签,这本身很难。为了克服这一点,我们提出了一种新型的UDA方法,称为“渐进式”方法(PAS),在该方法中,我们利用这种直觉似乎很合理,可以逐渐获得可靠的伪标签。特殊地,我们通过适应性地锚定/选择和利用具有可靠的伪标签的这些目标样本来逐步而稳定地改进共享子空间作为知识转移的桥梁。随后,精制子空间可以依次提供目标域的更可靠的伪标记,从而使模式崩溃高度缓解。我们的详尽评估表明,PA不仅对普通UDA有效,而且表现优于最具挑战性的部分区域适应(PDA)情况的最先进的艺术,其中源标签集将目标集成为目标。

Unsupervised Domain Adaptation (UDA) aims to classify unlabeled target domain by transferring knowledge from labeled source domain with domain shift. Most of the existing UDA methods try to mitigate the adverse impact induced by the shift via reducing domain discrepancy. However, such approaches easily suffer a notorious mode collapse issue due to the lack of labels in target domain. Naturally, one of the effective ways to mitigate this issue is to reliably estimate the pseudo labels for target domain, which itself is hard. To overcome this, we propose a novel UDA method named Progressive Adaptation of Subspaces approach (PAS) in which we utilize such an intuition that appears much reasonable to gradually obtain reliable pseudo labels. Speci fically, we progressively and steadily refine the shared subspaces as bridge of knowledge transfer by adaptively anchoring/selecting and leveraging those target samples with reliable pseudo labels. Subsequently, the refined subspaces can in turn provide more reliable pseudo-labels of the target domain, making the mode collapse highly mitigated. Our thorough evaluation demonstrates that PAS is not only effective for common UDA, but also outperforms the state-of-the arts for more challenging Partial Domain Adaptation (PDA) situation, where the source label set subsumes the target one.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源