论文标题

关于与结构成像有关的断层扫描速度不确定性

On tomography velocity uncertainty in relation with structural imaging

论文作者

Messud, Jérémie, Guillaume, Patrice, Lambaré, Gilles

论文摘要

评估与地震成像和目标视野相关的结构不确定性对于与石油和天然气勘探和生产有关的决策至关重要。通过开发速度模型建设工业方法,已经为工业应用做出了一个重要的突破。我们提出了这些方法的扩展,对断层扫描后概率密度函数(PDF)而不是完整的PDF进行了等高概率的轮廓,并使用非线性斜率层析成像(而不是像以前出版物一样而不是标准的层析层学迁移速度分析)。我们的方法允许评估与不确定性相关的假设(贝叶斯理论中的线性和高斯假设)的质量,并估算了数量迁移定位不确定性(对地平线不确定性的概括),除了效率方面的优势外。我们得出了这种方法基础的理论概念,并将我们的推导与以前的出版物的推导统一。由于该方法在完整的模型空间中起作用,而不是在预处理的模型空间中,因此我们将分析分为已解决的尚未解决的断层扫描空间。我们认为,解决的空间不确定性将在进一步的步骤中使用,导致决策,并且可能与在预处理模型空间中起作用的方法的输出有关。未解决的空间不确定性代表了我们方法特有的定性副产品,强烈强调了最不确定的总区域,因此对QC有用。这些概念在合成数据上得到了证明。补充,该方法的工业生存能力在两个不同的3D字段数据集上说明。

Evaluating structural uncertainties associated with seismic imaging and target horizons can be of critical importance for decision-making related to oil and gas exploration and production. An important breakthrough for industrial applications has been made with the development of industrial approaches to velocity model building. We propose an extension of these approaches, sampling an equi-probable contour of the tomography posterior probability density function (pdf) rather than the full pdf, and using non-linear slope tomography (rather than standard tomographic migration velocity analysis as in previous publications). Our approach allows to assess the quality of uncertainty-related assumptions (linearity and Gaussian hypothesis within the Bayesian theory) and estimate volumetric migration positioning uncertainties (a generalization of horizon uncertainties), in addition to the advantages in terms of efficiency. We derive the theoretical concepts underlying this approach and unify our derivations with those of previous publications. As the method works in the full model space rather than in a preconditioned model space, we split the analysis into the resolved and unresolved tomography spaces. We argue that the resolved space uncertainties are to be used in further steps leading to decision-making and can be related to the output of methods that work in a preconditioned model space. The unresolved space uncertainties represent a qualitative byproduct specific to our method, strongly highlighting the most uncertain gross areas, thus useful for QCs. These concepts are demonstrated on a synthetic data. Complementarily, the industrial viability of the method is illustrated on two different 3D field datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源