论文标题
激发态rényi熵和子系统距离二维非紧密骨骼理论 - I.单粒子状态
Excited state Rényi entropy and subsystem distance in two-dimensional non-compact bosonic theory -- I. Single-particle states
论文作者
论文摘要
我们研究了二维无质量非紧密的玻体理论中电流及其衍生物产生的激发态的透明熵,这是二维形式的保形场理论。我们还研究了这些状态之间的子系统shatten距离。二维无质量非紧密的骨气理论是有限的周期性无间隙谐波链与局部相互作用的连续限制。我们将当前及其衍生物在无质量骨气理论中产生的激发态确定为无间隙谐波链中的单粒子激发态。我们通过分析地计算第二个Rényi熵和无质体理论中的第二个schatten距离。然后,我们使用激发态的波函数,并在谐波链的无间隙极限中计算第二个rényi熵和第二个schatten距离,这与无质量的骨质理论完美匹配。我们验证在大动量中限制了单粒子状态Rényi熵采用通用形式。我们还表明,在大动量和大动量差的极限下,子系统距离距离采用通用形式,但是当动量差异很小时,它被校正形式取代。最后,我们还评论了在二维无连接的非紧密乳突理论的激发状态下的两个不相交间隔的相互性熵的评论。
We investigate the Rényi entropy of the excited states produced by the current and its derivatives in the two-dimensional free massless non-compact bosonic theory, which is a two-dimensional conformal field theory. We also study the subsystem Schatten distance between these states. The two-dimensional free massless non-compact bosonic theory is the continuum limit of the finite periodic gapless harmonic chains with the local interactions. We identify the excited states produced by current and its derivatives in the massless bosonic theory as the single-particle excited states in the gapless harmonic chain. We calculate analytically the second Rényi entropy and the second Schatten distance in the massless bosonic theory. We then use the wave functions of the excited states and calculate the second Rényi entropy and the second Schatten distance in the gapless limit of the harmonic chain, which match perfectly with the analytical results in the massless bosonic theory. We verify that in the large momentum limit the single-particle state Rényi entropy takes a universal form. We also show that in the limit of large momenta and large momentum difference the subsystem Schatten distance takes a universal form but it is replaced by a corrected form when the momentum difference is small. Finally we also comment on the mutual Rényi entropy of two disjoint intervals in the excited states of the two-dimensional free non-compact bosonic theory.