论文标题
关于原子探针晶体学的开放且较强的缩放工具:用于索引晶体结构和方向的高通量方法
On Open and Strong-Scaling Tools for Atom Probe Crystallography: High-Throughput Methods for Indexing Crystal Structure and Orientation
论文作者
论文摘要
体积晶体结构索引和取向映射是几乎对材料的局部化学与微结构之间空间相关性进行定量研究的关键数据处理步骤。对于电子和X射线衍射方法,可以开发索引工具,这些工具比较测量和分析计算的模式,以解码目的的局部区域内的结构和相对取向。因此,存在许多数值高效且自动化的软件工具来解决上述特征任务。 但是,对于原子探针层析成像(APT)实验,进行测量和分析计算模式之间比较的策略较不健壮,因为许多APT数据集可能包含大量噪声。鉴于对这种噪声的足够的一般预测模型仍然难以捉摸,因此适当的晶体学工具面临着几个局限性:它们对噪声的稳健性,因此,它们识别和区分不同晶体结构和方向的能力受到限制。此外,工具是顺序的,需要大量的手动相互作用。结合起来,通过对潜在晶体学信息的自动高通量研究来量化稳健的不确定性,这是一个艰巨的任务。 为了改善情况,我们回顾了存在的方法,并讨论它们如何与衍射群落中的方法联系在一起。通过此,我们修改了一些适当的方法,以产生原子布置的更强大的描述符。我们报告如何开发开源软件工具,用于在具有多个阶段的纳米晶体APT数据集中进行强量表和自动识别晶体结构和映射晶体方向。
Volumetric crystal structure indexing and orientation mapping are key data processing steps for virtually any quantitative study of spatial correlations between the local chemistry and the microstructure of a material. For electron and X-ray diffraction methods it is possible to develop indexing tools which compare measured and analytically computed patterns to decode the structure and relative orientation within local regions of interest. Consequently, a number of numerically efficient and automated software tools exist to solve the above characterisation tasks. For atom probe tomography (APT) experiments, however, the strategy of making comparisons between measured and analytically computed patterns is less robust because many APT datasets may contain substantial noise. Given that general enough predictive models for such noise remain elusive, crystallography tools for APT face several limitations: Their robustness to noise, and therefore, their capability to identify and distinguish different crystal structures and orientation is limited. In addition, the tools are sequential and demand substantial manual interaction. In combination, this makes robust uncertainty quantifying with automated high-throughput studies of the latent crystallographic information a difficult task with APT data. To improve the situation, we review the existent methods and discuss how they link to those in the diffraction communities. With this we modify some of the APT methods to yield more robust descriptors of the atomic arrangement. We report how this enables the development of an open-source software tool for strong-scaling and automated identifying of crystal structure and mapping crystal orientation in nanocrystalline APT datasets with multiple phases.