论文标题

ETLD:基于事件的动态对象跟踪框架

e-TLD: Event-based Framework for Dynamic Object Tracking

论文作者

Ramesh, Bharath, Zhang, Shihao, Yang, Hong, Ussa, Andres, Ong, Matthew, Orchard, Garrick, Xiang, Cheng

论文摘要

本文在一般跟踪条件下使用移动事件摄像头提出了一个长期对象跟踪框架。对于这些革命性摄像机来说,跟踪框架是对象的歧视框架,并通过在线学习使用歧视性表示形式,并在对象回到视野中时检测和重新浏览该对象。关键新颖性之一是使用基于事件的本地滑动窗口技术,该技术在具有混乱和纹理背景的场景中可靠地跟踪。此外,贝叶斯自举用于协助实时处理并增强对象表示的判别能力。另一方面,当对象重新输入相机的视野时,数据驱动的全局滑动窗口检测器将位置对象进行后续跟踪。广泛的实验证明了所提出的框架跟踪和检测各种形状和大小的任意对象的能力,包括人类等动态对象。与早期的作品相比,只要对象在更简单的背景设置中可见,这是一个重大的改进。在三个运动设置下,使用五个不同对象的地面真实位置,即翻译,旋转和6-DOF,对基于事件的跟踪框架进行了定量测量,对各种性能问题有重要见解。最后,C ++中的实时实现突出显示了实验室设置中规模,旋转,视图和遮挡方案的跟踪能力。

This paper presents a long-term object tracking framework with a moving event camera under general tracking conditions. A first of its kind for these revolutionary cameras, the tracking framework uses a discriminative representation for the object with online learning, and detects and re-tracks the object when it comes back into the field-of-view. One of the key novelties is the use of an event-based local sliding window technique that tracks reliably in scenes with cluttered and textured background. In addition, Bayesian bootstrapping is used to assist real-time processing and boost the discriminative power of the object representation. On the other hand, when the object re-enters the field-of-view of the camera, a data-driven, global sliding window detector locates the object for subsequent tracking. Extensive experiments demonstrate the ability of the proposed framework to track and detect arbitrary objects of various shapes and sizes, including dynamic objects such as a human. This is a significant improvement compared to earlier works that simply track objects as long as they are visible under simpler background settings. Using the ground truth locations for five different objects under three motion settings, namely translation, rotation and 6-DOF, quantitative measurement is reported for the event-based tracking framework with critical insights on various performance issues. Finally, real-time implementation in C++ highlights tracking ability under scale, rotation, view-point and occlusion scenarios in a lab setting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源