论文标题

扭曲的几何形状相干状态,用于循环量子重力

Twisted Geometries Coherent States for Loop Quantum Gravity

论文作者

Calcinari, Andrea, Freidel, Laurent, Livine, Etera, Speziale, Simone

论文摘要

我们引入了一个新的连贯状态家族,以进行循环量子重力,灵感来自扭曲的几何参数化。我们计算它们的峰值特性,并将其与热内内核相干状态进行比较。它们显示了该区域和自动算子的类似特征,但在通量方向上提高了峰值。在规格不变的水平上,新家庭是由连贯的互换产品的张量产品建造的。为了研究自动运算符的峰值,我们基于与扭曲几何参数化相关的谐波振荡器表示,引入了一个新的移位操作员。新的转移操作员捕获了与将其作用拆分为简单的旋转正向转移相关的载体组成部分。

We introduce a new family of coherent states for loop quantum gravity, inspired by the twisted geometry parametrization. We compute their peakedness properties and compare them with the heat-kernel coherent states. They show similar features for the area and the holonomy operators, but improved peakedness in the direction of the flux. At the gauge-invariant level, the new family is built from tensor products of coherent intertwiners. To study the peakedness of the holonomy operator, we introduce a new shift operator based on the harmonic oscillator representation associated with the twisted geometry parametrization. The new shift operator captures the components of the holonomy relevant to disentangle its action into a simple positive shift of the spins.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源